Subscribe to RSS
DOI: 10.1055/s-2007-967953
A Non-Classical Route to 2,3-Diiodoindoles from Indole-2-carboxylic Acids
Publication History
Publication Date:
07 February 2007 (online)

Abstract
A non-classical route to prepare 2,3-diiodoindole derivatives is described, starting from the readily available indole-2-carboxylic acids. A single step of iodinative decarboxylation is applied for the first time to substituted indoles.
Key words
2,3-diiodoindole - iodination - decarboxylation
- 1
Liu Y.Gribble GW. Tetrahedron Lett. 2000, 41: 8717 -
2a
Szmuszkovicz J.Glenn EM.Heinzelman RV.Hester JB.Youngdale GA. J. Med. Chem. 1966, 9: 527 -
2b
Glenn EM.Bowman BJ.Kooyers W.Koslowske T.Myers ML. J. Pharmacol. Exp. Ther. 1967, 155: 157 -
3a
Liu Y.Gribble GW. Tetrahedron Lett. 2002, 43: 7135 -
3b
Yang X.Althammer A.Knochel P. Org. Lett. 2004, 6: 1665 -
3c
Baron O.Knochel P. Angew. Chem. Int. Ed. 2005, 44: 3133 -
3d
Ueda I.Nishiura M.Takahashi T.Eda K.Hashimoto M.Yamamura K. Tetrahedron Lett. 2006, 47: 8535 -
3e
Liu Y.Gribble GW. Tetrahedron Lett. 2001, 42: 2949 -
4a
Erickson KL.Brennan MR.Namnum PA. Synth. Commun. 1981, 11: 253 -
4b
Brennan MR.Erickson KL.Szmalc FS.Tansey MJ.Thornton JM. Heterocycles 1986, 24: 2879 -
4c
Gribble GW.Allison BD.Conway SC.Saulnier MG. Org. Prep. Proced. Int. 1992, 24: 649 - 5
Saulnier MG.Gribble GW. J. Org. Chem. 1982, 47: 757 - 6
Katritzky AR.Akutagawa K. Tetrahedron Lett. 1985, 26: 5935 - 7
Bergman J.Venemalm L. J. Org. Chem. 1992, 57: 2495 - 8
Bocchi V.Palla G. Synthesis 1982, 1096 - 9
Ezquerra J.Pedregal C.Lamas C.Barluenga J.Pérez M.García-Martín MA.González JM. J. Org. Chem. 1996, 61: 5804 -
10a
Abell AD.Nabbs BK.Battersby AR. J. Org. Chem. 1998, 63: 8163 -
10b
Ono N.Yamamoto T.Shimada N.Kuroki K.Wada M.Utsunomiya R.Yano T.Uno H.Murashima T. Heterocycles 2003, 61: 433 -
10c
Skowronek P.Lightner DA. Monatsh. Chem. 2003, 134: 889 -
10d
Tu B.Ghosh B.Lightner DA. J. Org. Chem. 2003, 68: 8950 -
10e
Heynderickx A.Mohamed Kaou A.Moustrou C.Samat A.Guglielmetti R. New J. Chem. 2003, 27: 1425 -
10f
Hayashi T.Nakashima Y.Ito K.Ikegami T.Aritome I.Suzuki A.Hisaeda Y. Org. Lett. 2003, 5: 2845 -
10g
Tu B.Ghosh B.Lightner DA. Monatsh. Chem. 2004, 135: 519 - 11
Frydman B.Reil SJ.Boned J.Rapoport H. J. Org. Chem. 1968, 33: 3762 - 12
Coowar D.Bouissac J.Hanbali M.Paschaki M.Mohier E.Luu B. J. Med. Chem. 2004, 47: 6270 - 14 Indole-2-carboxylic esters were either commercially available or easily synthesized by Hemetsberger synthesis starting from the corresponding aldehydes, according to experimental procedures reported in ref. 12. Compound 1e was prepared according to:
Boger DL.Cerbone LR.Yohannes D. J. Org. Chem. 1988, 53: 5163 - 18
Putey A.Fournet G.Joseph B. Synlett 2006, 2755 - 21
Wang M.Xu X.-X.Liu Q.Xiong L.Yang B.Gao L.-X. Synth. Commun. 2002, 32: 3437
References and Notes
Typical Procedure for Iodinative Decarboxylation: To a stirred solution of NaHCO3 (34 mg, 0.40 mmol) in H2O (1.5 mL) was added 1-(ethoxymethyl)-6-methoxy-1H-indole-2-carboxylic acid (1a; 50 mg, 0.20 mmol). The suspension was stirred until a homogenous solution was obtained. CHCl3 (1.5 mL) and iodine (102 mg, 0.40 mmol) were added and the dark purple mixture was stirred at 70 °C for 4 h. The reaction mixture was diluted with H2O (10 mL) and CHCl3 (10 mL) and the organic layer was separated. The aqueous layer was extracted with CHCl3 (2 × 10 mL). The combined organic extracts were washed with a sat. aq solution of Na2S2O3, dried over Na2SO4 and evaporated in vacuo. The crude residue was purified by flash chromatography (PE-EtOAc, 95:5) to afford 2a (87 mg, 95%) as an oil which crystallized at r.t.; mp 81-82 °C (EtOAc-PE). IR (KBr): 3027, 2974, 2824, 1617, 1573, 1492, 1441, 1214, 1095 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.17 (t, J = 7.2 Hz, 3 H, CH3), 3.50 (q, J = 7.2 Hz, 2 H, CH2), 3.87 (s, 3 H, OCH3), 5.60 (s, 2 H, CH2), 6.83 (dd, J = 2.1, 8.8 Hz, 1 H, H-5), 6.95 (d, J = 2.1 Hz, 1 H, H-7), 7.28 (d, J = 8.8 Hz, 1 H, H-4). 13C NMR (75 MHz, CDCl3): δ = 15.1 (CH3), 55.9 (OCH3), 64.0 (CH2), 74.9 (C), 77.6 (CH2), 92.2 (C), 94.1 (CH), 111.5 (CH), 122.2 (CH), 126.6 (C), 138.5 (C), 157.4 (C). MS (ESI): m/z = 458 [M + H]+. Anal. Calcd for C12H13I2NO2: C, 31.54; H, 2.87; N, 3.06. Found: C, 31.88; H, 3.00; N, 3.12.
15Analytical Data of Compound 2b: oil. IR (film): 3058, 2975, 1436, 1389, 1215, 1094 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.16 (t, J = 7.2 Hz, 3 H, CH3), 3.49 (q, J = 7.2 Hz, 2 H, CH2), 5.66 (s, 2 H, CH2), 7.19-7.24 (m, 2 H, H-5, H-6), 7.41-7.48 (m, 2 H, H-4, H-7). 13C NMR (75 MHz, CDCl3): δ = 15.1 (CH3), 64.2 (CH2), 75.3 (C), 77.7 (CH2), 95.3 (C), 110.4 (CH), 121.6 (CH), 121.8 (CH), 123.5 (CH), 132.2 (C), 138.2 (C). MS (ESI): m/z = 428 [M + H]+. Anal. Calcd for C11H11I2NO: C, 30.94; H, 2.60; N, 3.28. Found: C, 31.22; H, 2.65; N, 3.33.
16Analytical Data of Compound 2c: mp 93-94 °C (EtOAc-PE). IR (KBr): 3020, 2973, 2837, 1602, 1575, 1500, 1459, 1426, 1388, 1251, 1176, 1086 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.15 (t, J = 7.2 Hz, 3 H, CH3), 3.48 (q, J = 7.2 Hz, 2 H, CH2), 3.94 (s, 3 H, OCH3), 5.62 (s, 2 H, CH2), 6.53-6.59 (m, 1 H, H-5), 7.12-7.14 (m, 2 H, H-6, H-7). 13C NMR (75 MHz, CDCl3): δ = 15.1 (CH3), 55.5 (OCH3), 64.1 (CH2), 68.5 (C), 78.2 (CH2), 95.6 (C), 101.5 (CH), 103.7 (CH), 120.8 (C), 124.2 (CH), 139.9 (C), 152.2 (C). MS (ESI): m/z = 458 [M + H]+. Anal. Calcd for C12H13I2NO2: C, 31.53; H, 2.87; N, 3.06. Found: C, 31.75; H, 2.71; N, 2.90.
17Analytical Data of Compound 2d: mp 89-91 °C (EtOAc-PE). IR (KBr): 3063, 2978, 2836, 1613, 1489, 1445, 1429, 1208, 1101, 1085 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.15 (t, J = 7.2 Hz, 3 H, CH3), 3.47 (q, J = 7.2 Hz, 2 H, CH2), 3.89 (s, 3 H, OCH3), 5.61 (s, 2 H, CH2), 6.83-6.86 (m, 2 H, H-4, H-6), 7.36 (d, J = 9.4 Hz, 1 H, H-7). 13C NMR (75 MHz, CDCl3): δ = 15.1 (CH3), 55.9 (OCH3), 64.1 (CH2), 74.5 (C), 77.8 (CH2), 95.0 (C), 103.0 (CH), 111.4 (CH), 113.8 (CH), 132.5 (C), 133.2 (C), 155.7 (C). MS (ESI): m/z = 458 [M + H]+. Anal. Calcd for C12H13I2NO2: C, 31.53; H, 2.87; N, 3.06. Found: C, 31.40; H, 2.77; N, 3.11.
19Analytical Data of Compound 2o: mp 93-95 °C (EtOAc-PE). IR (KBr): 3056, 2985, 2827, 1619, 1569, 1488, 1445, 1431, 1169, 1093 cm-1. 1H NMR (300 MHz, CDCl3): δ = 3.85 (s, 3 H, OCH3), 4.85 (d, J = 4.7 Hz, 2 H, CH2), 4.94 (d, J = 17.1 Hz, 1 H, =CH2), 5.19 (d, J = 10.2 Hz, 1 H, =CH2), 5.82-5.94 (m, 1 H, =CH), 6.72 (d, J = 1.9 Hz, 1 H, H-7), 6.80 (dd, J = 1.9, 8.9 Hz, 1 H, H-5), 7.28 (d, J = 8.9 Hz, 1 H, H-4). 13C NMR (75 MHz, CDCl3): δ = 51.3 (CH2), 55.9 (OCH3), 72.2 (C), 92.6 (C), 93.9 (CH), 110.8 (CH), 117.4 (=CH2), 122.1 (CH), 126.4 (C), 132.2 (CH), 138.0 (C), 157.2 (C). MS (ESI): m/z = 440 [M + H]+. Anal. Calcd for C12H11I2NO: C, 32.83; H, 2.53; N, 3.19. Found: C, 32.86; H, 2.44; N, 3.08.
20Analytical Data of Compound 3o: mp 165-167 °C (CHCl3-Et2O). IR (KBr): 3014, 2957, 1730, 1620, 1405, 1090 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 3.55-3.66 (m, 2 H, CH2I), 3.86 (s, 3 H, OCH3), 4.14 (dd, J = 10.2, 12.8 Hz, 1 H, NCH2), 4.81 (dd, J = 3.3, 12.8 Hz, 1 H, NCH2), 4.86-4.94 (m, 1 H, CH), 6.90 (dd, J = 1.9, 8.9 Hz, 1 H, H-5), 7.14 (d, J = 1.9 Hz, 1 H, H-7), 7.36 (d, J = 8.9 Hz, 1 H, H-4). 13C NMR (75 MHz, DMSO-d 6): δ = 4.2 (CH2I), 44.9 (NCH2), 55.7 (OCH3), 68.4 (C), 75.4 (CH), 92.8 (CH), 114.1 (CH), 121.1 (C), 123.7 (CH), 124.6 (C), 137.4 (C), 157.6 (C), 159.7 (C). MS (ESI): m/z = 484 [M + H]+. Anal. Calcd for C13H11I2NO3: C, 32.32; H, 2.30; N, 2.90. Found: C, 32.63; H, 2.27; N, 3.02.