Synthesis 2007(8): 1185-1196  
DOI: 10.1055/s-2007-965973
PAPER
© Georg Thieme Verlag Stuttgart · New York

Modular Design of Pyridine-Based Acyl-Transfer Catalysts

Ingmar Held, Shangjie Xu, Hendrik Zipse*
Department Chemie und Biochemie, LMU München, Butenandtstraße 5-13, 81377 München, Germany
Fax: +49(89)218077738; e-Mail: zipse@cup.uni-muenchen.de;
Further Information

Publication History

Received 24 January 2007
Publication Date:
28 February 2007 (online)

Abstract

Derivatives of 3,4-diaminopyridine have been synthesized and studied as catalysts for acyl-transfer reactions. The design of these catalysts is guided by the stability of their acetyl intermediates as determined through theoretical calculations at the B3LYP/6-311 + G(d,p)//B3LYP/6-31G(d) level of theory. The most promising catalysts have been synthesized through a three- to five-step synthesis starting from 3,4-diaminopyridine. The catalytic activity has been determined for the acylation of 1-ethynylcyclohexanol with acetic anhydride at 23 °C and with isobutyric anhydride at 40 °C. For both reactions, the catalytic activity depends dramatically on the substitution pattern of the diaminopyridines. Best results are obtained with catalysts containing alkyl substituents at both amine nitrogens.

    References

  • For reviews see:
  • 1a Höfle G. Steglich W. Vorbrüggen H. Angew. Chem., Int. Ed. Engl.  1978,  17:  569 ; Angew. Chem. 1978, 90, 602
  • 1b Scriven EFV. Chem. Soc. Rev.  1983,  12:  129 
  • 1c Hassner A. In Encyclopedia of Reagents for Organic Synthesis   Paquette L. Wiley; Chichester: 1995.  p.2022 
  • 1d Ragnarsson U. Grehn L. Acc. Chem. Res.  1998,  31:  494 
  • 1e Spivey AC. Maddaford A. Redgrave A. Org. Prep. Proced. Int.  2000,  32:  331 
  • 1f Berry DJ. Digiovanna CV. Metrick SS. Murugan R. ARKIVOC  2001,  (i):  201 ; www.arkat-usa.org
  • 1g Spivey AC. Arseniyadis S. Angew. Chem. Int. Ed.  2004,  43:  5436 ; Angew. Chem. 2004, 116, 5552
  • 2a Vedejs E. Jure M. Angew. Chem. Int. Ed.  2005,  44:  3971 ; Angew. Chem. 2005, 117, 4040
  • 2b Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 ; Angew. Chem. 2004, 116, 5248
  • 2c Fu G. Acc. Chem. Res.  2004,  37:  542 
  • 2d France S. Guerin DJ. Miller SJ. Lectka T. Chem. Rev.  2003,  103:  2985 
  • 2e Spivey AC. Maddaford A. Redgrave A. Org. Prep. Proced. Int.  2000,  32:  331 
  • 2f Fu G. Acc. Chem. Res.  2000,  33:  412 
  • 3a Kawabata T. Stragies R. Fukaya T. Fuji K. Chirality  2003,  15:  71 
  • 3b Kawabata T. Stragies R. Fukaya T. Nagaoka Y. Schedel H. Fuji K. Tetrahedron Lett.  2003,  44:  1545 
  • 4a Priem G. Pelotier B. Macdonald SJF. Anson MS. Campbell IB. J. Org. Chem.  2003,  68:  3844 
  • 4b Pelotier B. Priem G. Macdonald SJF. Anson MS. Upton RJ. Campbell IB. Tetrahedron Lett.  2005,  46:  9005 
  • 5a Spivey AC. Fekner T. Spey SE. Adams H. J. Org. Chem.  1999,  64:  9430 ; and references cited therein
  • 5b Spivey AC. Fekner T. Spey SE. J. Org. Chem.  2000,  65:  3154 
  • 5c Spivey AC. Maddaford A. Fekner T. Redgrave AJ. Frampton CS. J. Chem. Soc., Perkin Trans. 1  2000,  3460 
  • 5d Spivey AC. Maddaford A. Fekner T. Leese DP. Redgrave AJ. Frampton CS. J. Chem. Soc., Perkin Trans. 1  2001,  1785 
  • 5e Malardier-Jugroot C. Spivey AC. Whitehead MA. J. Mol. Struct. (THEOCHEM)  2003,  623:  263 
  • 5f Spivey AC. Leese DP. Zhu F. Davey SG. Jarvest RL. Tetrahedron  2004,  60:  4513 
  • 5g Spivey AC. Arseniyadis S. Fekner T. Maddaford A. Lees DP. Tetrahedron  2006,  62:  295 
  • 6a Dalaigh CO. Hynes SJ. Maher DJ. Connon SJ. Org. Biomol. Chem.  2005,  3:  981 
  • 6b Dalaigh CO. Hynes SJ. O’Brien JE. McCabe T. Maher DJ. Watson GW. Connon SJ. Org. Biomol. Chem.  2006,  4:  2785 
  • 7a Shaw SA. Aleman P. Vedejs E. J. Am. Chem. Soc.  2003,  125:  13368 
  • 7b Shaw SA. Aleman P. Christy J. Kampf JW. Va P. Vedejs E. J. Am. Chem. Soc.  2006,  128:  925 
  • 8 Yamada S. Misono T. Iwai Y. Tetrahedron Lett.  2005,  46:  2239 
  • 9a Miller SJ. Acc. Chem. Res.  2004,  37:  601 ; and references cited therein
  • 9b Fierman MB. O’Leary DJ. Steinmetz WE. Miller SJ. J. Am. Chem. Soc.  2004,  126:  6967 
  • 9c Evans JW. Fierman MB. Miller SJ. Ellman JA. J. Am. Chem. Soc.  2004,  126:  8134 
  • 9d Sculimbrene BR. Xu Y. Miller SJ. J. Am. Chem. Soc.  2004,  126:  13182 
  • 9e Morgan AJ. Wang YK. Roberts MF. Miller SJ. J. Am. Chem. Soc.  2004,  126:  15370 
  • 9f Lewis CA. Sculimbrene BR. Xu Y. Miller SJ. Org. Lett.  2005,  7:  3021 
  • 9g Xu Y. Sculimbrene BR. Miller SJ. J. Org. Chem.  2006,  71:  4919 
  • 10 Singh S. Das G. Singh OV. Han H. Org. Lett.  2007,  9:  401 
  • 11 Heinrich MR. Klisa HS. Mayr H. Steglich W. Zipse H. Angew. Chem. Int. Ed.  2003,  42:  4826 ; Angew. Chem. 2003, 115, 4975
  • 12 Held I. Villinger A. Zipse H. Synthesis  2005,  1425 
  • 13 Mederski WWKR. Kux D. Knoth M. Schwarzkopf-Hofmann MJ. Heterocycles  2003,  4:  925 
  • 14 Armand J. Boulares L. Bellec C. Pinson J. Can. J. Chem.  1988,  66:  1500 
  • 15 Moore ML. Org. React.  1949,  5:  301 
  • 16 Sotirou-Leventis C. Mao Z. Rawashdeh A.-MM. J. Org. Chem.  2000,  65:  6017 
  • 17a Kison C. Meyer N. Opatz T. Angew. Chem. Int. Ed.  2005,  44:  5662 ; Angew. Chem. 2005, 117, 5807
  • 17b

    The large dependence of the reaction yield on the age of the BH3·THF solution described in this publication could be verified for the reduction of 24.

  • 18 Sakamoto T. Miura N. Kondo Y. Yamanaka H. Chem. Pharm. Bull.  1986,  34:  2018 
  • 19 Claridge TDW. High-Resolution NMR Techniques in Organic Chemistry, Tetrahedron Organic Chemistry Series   Vol. 19:  Pergamon; Oxford: 1999.  p.298 
  • 20 Xu S. Held I. Kempf B. Mayr H. Steglich W. Zipse H. Chem. Eur. J.  2005,  11:  4751 
  • 21 Fischer CB. Xu S. Zipse H. Chem. Eur. J.  2006,  12:  5779 
  • 24 Gottlieb HE. Kotyar V. Nudelman A. J. Org. Chem.  1997,  21:  7512 
  • 25 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision B.03   Gaussian, Inc.; Wallingford CT: 2004. 
22

The rate of reaction in these cases is hardly different from that of the uncatalyzed background reaction, making the exact determination of the half-lives rather difficult with the methodology employed here. The data given in Table [2] have been estimated from the conversion measured for reaction A up to 25 d, 17 h and 30 min and for reaction B up to 31 d, 17 h and 15 min. In both cases the reactions had not yet reached 50% conversion at these times.

23

The conversion of the reaction stopped at 59%. ESI-MS studies of the reaction mixture indicate that the catalyst does not survive the reaction conditions employed here.