References
<A NAME="RM04807SS-1">1</A>
New address: Wyeth Research, 401 N. Middletown Road, Pearl River, NY 109, USA.
<A NAME="RM04807SS-2">2</A>
Kruber O.
Ber. Dtsch. Chem. Ges.
1943,
76:
128
<A NAME="RM04807SS-3A">3a</A> First synthesis of 7-azaindole:
Clemo GR.
Swan GA.
J. Chem. Soc.
1945,
603
Improved versions:
<A NAME="RM04807SS-3B">3b</A>
Robison M.
Robison B.
J. Am. Chem. Soc.
1955,
77:
457
<A NAME="RM04807SS-3C">3c</A> See also:
Lorenz RR.
Tullar BF.
Koelsch CF.
Archer S.
J. Org. Chem.
1965,
30:
2531
<A NAME="RM04807SS-3D">3d</A> See also:
Hands D.
Bishop B.
Cameron M.
Edwards JS.
Cottrell IF.
Wright SHB.
Synthesis
1996,
877
For reviews, see:
<A NAME="RM04807SS-3E">3e</A>
Willette RE.
Adv. Heterocycl. Chem.
1968,
9:
27
<A NAME="RM04807SS-3F">3f</A>
Yakhontov LN.
Khim. Geterotsikl. Soedin.
1982,
1155
<A NAME="RM04807SS-3G">3g</A>
Mérour J.-Y.
Benoît J.
Curr. Org. Chem.
2001,
5:
471
<A NAME="RM04807SS-3H">3h</A>
Popowycz F.
Routier S.
Benoît J.
Mérour J.-Y.
Tetrahedron
2007,
63:
1031
<A NAME="RM04807SS-3I">3i</A> For a review on synthetic methodology for (partially) hydrogenated pyrrolopyridines,
see:
Varlamov AV.
Borisova TN.
Voskressensky LG.
Synthesis
2002,
155
<A NAME="RM04807SS-4">4</A>
Jachontow LN.
Pharmazie
1963,
18:
317 , and references cited therein
<A NAME="RM04807SS-5A">5a</A> Kidder and co-workers were the first to report that 7-azaindoles can act as antimetabolites
for the corresponding indole compounds in biological pathways:
Kidder GW.
Dewey VC.
Biochim. Biophys. Acta
1955,
17:
288
<A NAME="RM04807SS-5B">5b</A> For an early review on studies of biological activity of 7-azaindoles, see:
Yakhontov LN.
Prokopov AA.
Russ. Chem. Rev. (Engl. Transl.)
1980,
49:
428
Especially since the year 2000, the medicinal chemistry literature on pharmaceutically
active 7-azaindole derivatives has increased exponentially; among others, their use
has been reported in the following categories:
<A NAME="RM04807SS-6A">6a</A> As constituents of anti-inflammatories:
Saify ZN.
Pakistan J. Pharmacol.
1985,
2:
43
<A NAME="RM04807SS-6B">6b</A> See also:
Henry JR.
Dodd JH.
Tetrahedron Lett.
1998,
39:
8763
<A NAME="RM04807SS-6C">6c</A> As anxiolytics:
Meade EA.
Beauchamp LM.
J. Heterocycl. Chem.
1996,
33:
303
<A NAME="RM04807SS-6D">6d</A> As plant antifungals:
Minakata S.
Hamada T.
Komatsu M.
Tsuboi H.
Kikuta H.
Ohshiro Y.
J. Agric. Food Chem.
1997,
45:
2345
<A NAME="RM04807SS-6E">6e</A> As corticotropin releasing hormone antagonists:
Hodge CN.
Aldrich PE.
Wasserman ZR.
Fernandez CH.
Nemeth GA.
Arvanitis A.
Cheeseman RS.
Chorvat RJ.
Ciganek E.
Christos TE.
Gilligan PJ.
Krenitsky P.
Scholfield E.
Strucely P.
J. Med. Chem.
1999,
42:
819
<A NAME="RM04807SS-6F">6f</A> As antipsychotic agents:
Kulagowski JJ.
Broughton HB.
Curtis NR.
Mawer IM.
Ridgill MP.
Baker R.
Emms F.
Freedmann SB.
Marwood R.
Patel S.
Ragan CI.
Leeson PD.
J. Med. Chem.
1996,
39:
1941
<A NAME="RM04807SS-6G">6g</A> As antitussive agents:
Allegretti M.
Anacardio R.
Cesta MC.
Curti R.
Mantovanini M.
Nano G.
Topai A.
Zampella G.
Org. Process Res. Dev.
2003,
7:
209
<A NAME="RM04807SS-6H">6h</A>
Soundararajan N,
Benoit S, and
Gingras S. inventors; US Patent Appl. 2004/0044025. As antivirals/anti-HIV agents:
<A NAME="RM04807SS-6I">6i</A> See also:
Reeves JD.
Piefer AJ.
Drugs
2005,
65:
1747
<A NAME="RM04807SS-6J">6j</A> See also:
Yang A.
Zadjura L.
D’Arienzo AM.
Santone K.
Llunk L.
Green D.
Lin P.-F.
Colonno R.
Wang T.
Neanwell N.
Hansel S.
Biopharm. Drug Dispos.
2005,
26:
387
<A NAME="RM04807SS-6K">6k</A> As PPARγ modulators:
Dropinski JF.
Akiyama T.
Einstein M.
Habulihaz B.
Doebber T.
Berger JP.
Meinke PT.
Shi GQ.
Bioorg. Med. Chem. Lett.
2005,
15:
5035
<A NAME="RM04807SS-6L">6l</A>
Tabart M,
Bacque E,
Halley F,
Ronan B,
Desmazeau P,
Viviani F, and
Souaille C. inventors; French Patent 2884821. As inhibitors of various kinases (FAK, KDR, Tie2, Aurora, JNK):
<A NAME="RM04807SS-6M">6m</A>
Patel VF,
Askew B,
Booker S,
Chen G,
Dipietro LV,
Germain J,
Habgood GJ,
Huang Q,
Kim T,
Li A,
Nishimura N,
Nomak R,
Riahi B,
Yuan CC, and
Elbaum D. inventors; US Patent Appl. 2003/3203922. See also:
<A NAME="RM04807SS-6N">6n</A>
Rodgers JD,
Wang H,
Combs AP, and
Sparks RB. inventors; PCT Int. Appl. WO 2006069080. See also:
<A NAME="RM04807SS-6O">6o</A>
Graczyk P,
Khan A,
Bhatia G, and
Limura Y. inventors; PCT Int. Appl. WO 2004078756. See also:
<A NAME="RM04807SS-6P">6p</A> As dopamine d-4 receptor ligands:
Le Hyaric M.
de Almeida MV.
de Souza MVN.
Quim. Nova
2002,
25:
1165
<A NAME="RM04807SS-6Q">6q</A> As gonadotropin releasing hormone antagonists:
Ujjainwalla F.
Walsh TF.
Tetrahedron Lett.
2001,
42:
6441
<A NAME="RM04807SS-6R">6r</A> As GSK-3β inhibitors:
O’Neill DJ.
Shen L.
Prouty C.
Conway BR.
Westover L.
Xu JZ.
Zhang H.-C.
Maryanoff BE.
Murray WV.
Demarest KT.
Kuo G.-H.
Bioorg. Med. Chem.
2004,
12:
3167
<A NAME="RM04807SS-6S">6s</A> As p38 MAP kinase inhibitors: Expert Opin. Ther. Pat.
2004,
15:
227
<A NAME="RM04807SS-6T">6t</A> As Rho kinase inhibitors:
Ishizaki T.
Uehata M.
Tamechika I.
Keel J.
Nonomura K.
Maekawa M.
Narumiya S.
Mol. Pharm.
2000,
57:
976
<A NAME="RM04807SS-6U">6u</A> As CDK1 inhibitors:
Huang S.
Li R.
Connolly PJ.
Emanuel S.
Middleton SA.
Bioorg. Med. Chem. Lett.
2006,
16:
4818
<A NAME="RM04807SS-6V">6v</A> As cannabimimetics:
Gluszok S.
Goossens L.
Depreux P.
Barbry D.
Hénichart J.-P.
Synth. Commun.
2006,
36:
2797
<A NAME="RM04807SS-6W">6w</A> As antihistamines:
Fonquerna S.
Miralpeix M.
Pagès L.
Puig C.
Cardús A.
Antón F.
Vilella D.
Aparici M.
Prieto J.
Warrellow G.
Beleta J.
Ryder H.
Bioorg. Med. Chem. Lett.
2005,
15:
1165
<A NAME="RM04807SS-6X">6x</A> As melatonin analogues:
Larraya C.
Guillard J.
Renard P.
Audinot V.
Boutin JA.
Delegrange P.
Bennejean C.
Viaud-Massuard M.-C.
Eur. J. Med. Chem.
2004,
39:
515
<A NAME="RM04807SS-6Y">6y</A> As staurosporin analogues:
Routier S.
Ayerbe N.
Mérour J.-Y.
Coudert G.
Bailly C.
Pierré A.
Pfeifer B.
Caignard D.-H.
Renard P.
Tetrahedron
2002,
58:
6621
<A NAME="RM04807SS-6Z">6z</A> As rebeccamycin analogues:
Messaoudi S.
Anizon F.
Pfeiffer B.
Prudhomme M.
Tetrahedron
2005,
61:
7304
Hofgen N,
Egerland U,
Kronbach T,
Marx D,
Szelenyi S,
Kuss H, and
Polymeropoulos E. inventors; US Patent Appl. 2006/258700. (aa) As PDE-4 inhibitors:
Beswick P,
Gleave R, and
Swarbrick M. inventors; PCT Int. Appl. WO 2005016924. (bb) As COX-2 inhibitors:
<A NAME="RM04807SS-7A">7a</A>
Rodriguez J.
Feraud M.
Spec. Chem. Mag.
2005,
25:
16
<A NAME="RM04807SS-7B">7b</A>
Popowycz F.
Routier S.
Joseph B.
Mérour J.-Y.
Tetrahedron
2007,
63:
1031
<A NAME="RM04807SS-8A">8a</A>
Kim YK,
Lee SJ,
Ko JJ,
Lee TG,
Jung I, and
Song KH. inventors; Korean Patent Appl. KR 2006/001405.
<A NAME="RM04807SS-8B">8b</A>
Catalan J.
Chem. Phys. Lett.
2006,
423:
395
<A NAME="RM04807SS-8C">8c</A>
Wu P.-W.
Hsieh W.-T.
Cheng Y.-M.
Wei C.-Y.
Chou P.-T.
J. Am. Chem. Soc.
2006,
128:
14426
<A NAME="RM04807SS-8D">8d</A>
Huang W.-H.
Jia W.-L.
Wang S.
Can. J. Chem.
2006,
84:
477
<A NAME="RM04807SS-8E">8e</A>
Tani K.
Sakurai H.
Fujii H.
Hirao T.
J. Organomet. Chem.
2004,
689:
1665
<A NAME="RM04807SS-9">9</A>
Hynes J.
Doubleday WW.
Dyckman AJ.
Godfrey JD.
Grosso JA.
Kiau S.
Leftheris K.
J. Org. Chem.
2004,
69:
1368
<A NAME="RM04807SS-10">10</A>
Yokoyama M.
Nomura M.
Togo H.
Seki H.
J. Chem. Soc., Perkin Trans. 1
1996,
2145
<A NAME="RM04807SS-11A">11a</A>
Galvez C.
Viladomes P.
J. Heterocycl. Chem.
1984,
21:
421
<A NAME="RM04807SS-11B">11b</A>
Alvarez M.
Fernandez D.
Joule JA.
Synthesis
1999,
615
<A NAME="RM04807SS-11C">11c</A>
Cai Z.
Feng J.
Guo Y.
Li P.
Shen Z.
Chu F.
Guo Z.
Bioorg. Med. Chem.
2006,
14:
866
<A NAME="RM04807SS-12A">12a</A>
Galvez C.
Viladoms P.
J. Heterocycl. Chem.
1982,
19:
665
<A NAME="RM04807SS-12B">12b</A>
Shadrina LP.
Dormidontov YP.
Ponomarev VG.
Lapkin II.
Khim. Geterotsikl. Soedin.
1987,
1206
<A NAME="RM04807SS-12C">12c</A>
Song D.
Liu S.-F.
Wang R.-Y.
Wang S.
J. Organomet. Chem.
2001,
631:
175
<A NAME="RM04807SS-12D">12d</A>
Zhang Z.
Yang Z.
Wong H.
Zhu J.
Meanwell NA.
Kadow JF.
Wang T.
J. Org. Chem.
2002,
67:
6226
<A NAME="RM04807SS-12E">12e</A>
Allegretti M.
Anacardio R.
Cesta MC.
Curti R.
Mantovanini M.
Nano G.
Topai A.
Zampella G.
Org. Process Res. Dev.
2003,
7:
209
<A NAME="RM04807SS-12F">12f</A>
Helgen C.
Bochet CG.
Heterocycles
2006,
67:
797
<A NAME="RM04807SS-13A">13a</A>
Wu Q.
Hook A.
Wang S.
Angew. Chem. Int. Ed.
2000,
39:
3933
<A NAME="RM04807SS-13B">13b</A>
Tani K.
Sakurai H.
Fujii H.
Hirao T.
J. Organomet. Chem.
2004,
689:
1665
<A NAME="RM04807SS-14">14</A>
Reisch J.
Dittmann S.
J. Heterocycl. Chem.
1993,
30:
379
<A NAME="RM04807SS-15A">15a</A>
Ferreira PMT.
Maia HLS.
Monteiro LS.
Sacramento J.
Sebastião J.
J. Chem. Soc., Perkin Trans. 1
2000,
3317
<A NAME="RM04807SS-15B">15b</A>
Rolland-Fulcrand V.
Haroune N.
Roumestant M.-L.
Martinez J.
Tetrahedron: Asymmetry
2000,
11:
4719
<A NAME="RM04807SS-15C">15c</A>
Huck J.
Duru C.
Roumestant M.-L.
Martinez J.
Synthesis
2003,
2165
<A NAME="RM04807SS-16">16</A>
Ahaidar A.
Fernandez D.
Danelon G.
Cuevas C.
Manzanares I.
Albericio F.
Joule JA.
Alvarez M.
J. Org. Chem.
2003,
68:
10020
<A NAME="RM04807SS-17">17</A>
Wang K.
Stringfellow S.
Dong S.
Jiao Y.
Yu H.
Spectrochim. Acta, Part A
2002,
58:
2595
<A NAME="RM04807SS-18A">18a</A>
Verbiscar AJ.
J. Med. Chem.
1972,
15:
149
<A NAME="RM04807SS-18B">18b</A>
Oh S.-J.
Lee KC.
Lee S.-Y.
Ryu EK.
Saji H.
Choe YS.
Chi DY.
Kim SE.
Lee J.
Kim B.-T.
Bioorg. Med. Chem.
2004,
12:
5505
<A NAME="RM04807SS-19">19</A>
Mewshaw RE.
Meagher KL.
Zhou P.
Zhou D.
Shi X.
Scerni R.
Smith D.
Schechter LE.
Andree TH.
Bioorg. Med. Chem. Lett.
2002,
12:
307
<A NAME="RM04807SS-20A">20a</A>
Robison MM.
Robison BL.
J. Am. Chem. Soc.
1955,
77:
457
<A NAME="RM04807SS-20B">20b</A>
Eskola O.
Bergman J.
Lehikoinen P.
Haaparanta M.
Grönroos T.
Forsback S.
Solin O.
J. Labelled Compd. Radiopharm.
2002,
45:
687
<A NAME="RM04807SS-21">21</A>
Alfonsi M.
Arcadi A.
Bianchi G.
Marinelli F.
Nardini A.
Eur. J. Org. Chem.
2006,
2393
<A NAME="RM04807SS-22A">22a</A>
Sloan MJ.
Phillips RS.
Bioorg. Med. Chem. Lett.
1992,
2:
1053
<A NAME="RM04807SS-22B">22b</A>
Routier S.
Ayerbe N.
Merour J.-Y.
Coudert G.
Bailly C.
Pierre A.
Pfeiffer B.
Caignard
D.-H.
Renard P.
Tetrahedron
2002,
58:
6621
<A NAME="RM04807SS-22C">22c</A>
Henon H.
Messaoudi S.
Hugon B.
Anizon F.
Pfeiffer B.
Prudhommer M.
Tetrahedron
2005,
61:
5599
<A NAME="RM04807SS-23A">23a</A> Chlorination:
Minakata S.
Hamada T.
Komatsu M.
Tsuboi H.
Kikuta H.
Ohshiro Y.
J. Agric. Food Chem.
1997,
45:
2345
<A NAME="RM04807SS-23B">23b</A> Bromination of N1-unprotected 1 is unknown. For a high-yielding C3 bromination on N1-benzenesulfonyl protected 1, see:
Huang S.
Li R.
Connolly PJ.
Emanuel S.
Middleton SA.
Bioorg. Med. Chem. Lett.
2006,
16:
4818
<A NAME="RM04807SS-23C">23c</A> For regioselective C3 bromination of 2-substituted 7-azaindoles, see:
Gallou F.
Reeves JT.
Tan Z.
Song JJ.
Yee NK.
Harcken C.
Liu P.
Thomson D.
Senanayake CH.
Synlett
2007,
211
<A NAME="RM04807SS-23D">23d</A> Iodination: N1-unprotected 3-iodo-7-azaindole is unstable; selective C3 iodination of N1-BOC-protected 1 is possible:
Herbert R.
Wibberley DG.
J. Chem. Soc. C
1969,
1505
<A NAME="RM04807SS-23E">23e</A> See also:
Kelly TA.
McNeil DW.
Rose JM.
David E.
Shih C.-K.
Grob PM.
J. Med. Chem.
1997,
40:
2430
<A NAME="RM04807SS-24A">24a</A>
Robison MM.
Robison BL.
Butler FP.
J. Am. Chem. Soc.
1959,
81:
743
<A NAME="RM04807SS-24B">24b</A>
Yizun J.
Adams GE.
Parrick J.
Stratford IJ.
Eur. J. Med. Chem.
1989,
24:
511
<A NAME="RM04807SS-25">25</A>
Minakata S.
Itoh S.
Komatsu M.
Ohshiro Y.
Bull. Chem. Soc. Jpn.
1992,
65:
2992
<A NAME="RM04807SS-26A">26a</A>
N1-Protected 7-azaindolin-3-one was obtained from Bayer-Villiger oxidation of the corresponding
3-formyl compound, see:
Desarbre E.
Mérour J.-Y.
Tetrahedron Lett.
1994,
35:
1995
<A NAME="RM04807SS-26B">26b</A>
N1-(Me, Et, Bn)-substituted 7-azaisatin was obtained from the parent azaindole via
oxidation with NBS/DMSO, see:
Tatsugi J.
Zhiwei T.
Amano T.
Izawa Y.
Heterocycles
2000,
53:
1145
<A NAME="RM04807SS-27A">27a</A>
Clark BAJ.
Parrick J.
J. Chem. Soc., Perkin Trans. 1
1974,
2270
<A NAME="RM04807SS-27B">27b</A>
Schneller SW.
Luo J.-K.
J. Org. Chem.
1980,
45:
4045
<A NAME="RM04807SS-27C">27c</A>
Chen C.-C.
Chang C.-P.
Yu W.-S.
Hung F.-T.
Liu Y.-I.
Wu G.-R.
Chou P.-T.
J. Phys. Chem. A
2003,
107:
1459
<A NAME="RM04807SS-27D">27d</A>
Soundararajan N,
Benoit S, and
Gingras S. inventors; US Patent Appl. US 2004/0044025.
<A NAME="RM04807SS-27E">27e</A>
Wang X.
Zhi B.
Baum J.
Chen Y.
Crockett R.
Huang L.
Eisenberg S.
Ng J.
Larsen R.
Martinelli M.
Reider P.
J. Org. Chem.
2006,
71:
4021
<A NAME="RM04807SS-28">28</A>
Thibault C.
L’Heureux A.
Bhide RS.
Ruel R.
Org. Lett.
2003,
5:
5023
<A NAME="RM04807SS-29">29</A>
Antonini I.
Claudi F.
Cristalli G.
Franchetti P.
Grifantini M.
Martelli S.
J. Med. Chem.
1982,
25:
1258
4-Halo-7-azaindoles have been used as intermediates for other 4-substituted and also
polysubstituted 7-azaindoles, for recent examples, see:
<A NAME="RM04807SS-30A">30a</A>
Allegretti M.
Arcadi A.
Marinelli F.
Nicolini L.
Synlett
2001,
609
<A NAME="RM04807SS-30B">30b</A>
L’Heureux A.
Thibault C.
Ruel R.
Tetrahedron Lett.
2004,
45:
2317
<A NAME="RM04807SS-30C">30c</A>
Thutewohl M.
Schirok H.
Bennabi S.
Figueroa-Pérez S.
Synthesis
2006,
629
<A NAME="RM04807SS-30D">30d</A>
For a more comprehensive overview, see Refs. 3c,d.
<A NAME="RM04807SS-31A">31a</A> 5-Bromo-7-azaindole (four steps from 1):
Mazéas D.
Guillaumet G.
Viaud M.-C.
Heterocycles
1999,
50:
1065
<A NAME="RM04807SS-31B">31b</A>
For a synthesis of 4,5-disubstituted 7-azaindoles from 4-substituted 7-azaindoles
via directed ortho-metalation, see ref. 30b.
<A NAME="RM04807SS-32">32</A> See the recent comparison of synthetic routes for 5-amino-7-azaindole:
Pearson SE.
Nandan S.
Synthesis
2005,
2503
<A NAME="RM04807SS-33A">33a</A> Metalation and quenching with electrophiles of N1-arylsulfonyl-protected 7-azaindole:
Desarbre E.
Coudret S.
Meheust C.
Mérour J.-Y.
Tetrahedron
1997,
53:
3637
<A NAME="RM04807SS-33B">33b</A> See also:
Joseph B.
Da Costa H.
Mérour J.-Y.
Léonce S.
Tetrahedron
2000,
56:
3189
<A NAME="RM04807SS-33C">33c</A> Arylation of N1-SEM-protected 7-azaindole:
Touré BB.
Lane BS.
Sames D.
Org. Lett.
2006,
8:
1979
<A NAME="RM04807SS-34">34</A> Robison et al. had obtained 6-oxo-7-azaindole via dehydrogenation, followed by
acetyl group hydrolysis, of a mixture of 5- and 6-acetoxy-1-acetyl-7-azaindoline:
Robison MM.
Robison BL.
Butler FP.
J. Am. Chem. Soc.
1959,
81:
743
<A NAME="RM04807SS-35A">35a</A>
Minakata S.
Komatsu M.
Ohshiro Y.
Synthesis
1992,
661
The 6-halo-7-azaindoles described have been used as starting materials for various
transition metal-catalyzed C-C coupling reactions, see:
<A NAME="RM04807SS-35B">35b</A>
Minakata S.
Itoh S.
Komatsu M.
Ohshiro Y.
Bull. Chem. Soc. Jpn.
1992,
65:
2992
<A NAME="RM04807SS-35C">35c</A>
See also ref. 30a.
<A NAME="RM04807SS-35D">35d</A> Recently, a seven-step de novo synthesis of a new cross coupling-reagent, N1-benzyl-6-triflyloxy-7-azaindole, has been reported, see:
Kerr M.
Zheng X.
Org. Lett.
2006,
8:
3777
<A NAME="RM04807SS-36A">36a</A>
Henze M.
Ber. Dtsch. Chem. Ges.
1936,
69:
1566
<A NAME="RM04807SS-36B">36b</A>
Katritzky AR.
Lagowski JM.
Chemistry of the Heterocyclic N-Oxides
Academic Press;
New York:
1971.
p.300-303
<A NAME="RM04807SS-36C">36c</A>
Hayashi E.
Higashino T.
Heterocycles
1979,
12:
837
<A NAME="RM04807SS-36D">36d</A>
Fife WK.
Scriven EFV.
Heterocycles
1984,
22:
2375 ; and references cited therein
<A NAME="RM04807SS-36E">36e</A>
Yakhontov LN.
Krasnokutskaya DM.
Akalaev AN.
Palant IN.
Vainshtein YuI.
Khim. Geterotsikl. Soedin.
1971,
789
<A NAME="RM04807SS-36F">36f</A>
Fife WK.
Boyer BD.
Heterocycles
1984,
22:
1121
<A NAME="RM04807SS-36G">36g</A>
Comins DL.
Joseph SP. In Comprehensive Heterocyclic Chemistry II
Vol. 5:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
London:
1996.
p.70-78
Indirect syntheses of 6-amino-substituted 7-azaindoles have been achieved by: (1)
reacting the corresponding 6-halo-7-azaindole with ammonia or amines, but, as a rule,
require extended autoclaving at high temperatures/pressures,35a,b and (2) by extended heating at high temperatures of the corresponding 6-chloro-7-azaindoline
with amines and subsequent oxidation to the azaindole, see:
<A NAME="RM04807SS-37A">37a</A>
Yakhontov LN.
Krasnokutskaya DM.
Akalaev AN.
Dokl. Akad. Nauk SSSR
1970,
192:
118
<A NAME="RM04807SS-37B">37b</A> See also:
Yutilov YuM.
Svertilova IA.
Khim. Geterotsikl. Soedin.
1986,
91
<A NAME="RM04807SS-37C">37c</A> Oxidation/cyclization/elimination/decarboxylation of a 2,6-diaminosubstituted
pyridyl-3-β-keto ester:
Sanders WJ.
Zhang X.
Wagner R.
Org. Lett.
2004,
6:
4527
<A NAME="RM04807SS-38">38</A>
Germain J,
Askew BC,
Bauer D,
Choquette D,
Dipietro LV,
Graceffa R,
Harmanage J.-C,
Huang Q,
Kim JL,
La D,
Li A,
Nishimura N,
Nomack R,
Patel V,
Potashman M,
Riahi B,
Storz T,
Van der Plas S,
Yang K, and
Yuan C. inventors; PCT Int. Appl. WO 2007/048070.
<A NAME="RM04807SS-39">39</A>
Cox PJ,
Majid TN,
Lai JYQ,
Morley AD,
Amendola S,
Deprets S, and
Edlin C. inventors; PCT Int. Appl. WO 2001047922.
<A NAME="RM04807SS-40">40</A>
Shiotani S.
Taniguchi K.
J. Heterocycl. Chem.
1997,
34:
493
<A NAME="RM04807SS-41">41</A>
CAS & Beilstein online searches, June 2007.
<A NAME="RM04807SS-42">42</A>
The MCBA salt 3 is the most practical way to isolate the N-oxide 2 as it readily precipitates from a number of nonpolar solvents during the oxidation
of 1 with MCPBA (cf. refs. 27b,d,e). On the other hand, upon freebasing, 20%27d to 50%27e loss is typically incurred due to the high water solubility of 2.
<A NAME="RM04807SS-43">43</A>
Methyl ester formation of MCBA was also not observed.
<A NAME="RM04807SS-44A">44a</A> Ochiai and Nakayama were the first to report the formation of a cyanopyridine
(2-cyano-4-chloropyridine) from the reaction of cyanide with the corresponding O-alkyl pyridinium salt:
Ochiai E.
Nakayama I.
Yakugaku Zasshi
1945,
65:
7 ; Chem. Abstr. 1945, 45, 49933
The reaction was rediscovered and expanded independently by Okamoto/Tani and Feely/Beavers:
<A NAME="RM04807SS-44B">44b</A>
Okamoto T.
Tani H.
Chem. Pharm. Bull
1959,
7:
130
<A NAME="RM04807SS-44C">44c</A> See also:
Okamoto T.
Tani H.
Chem. Pharm. Bull
1959,
7:
925
<A NAME="RM04807SS-44D">44d</A> See also:
Okamoto T.
Tani H.
Chem. Pharm. Bull
1959,
7:
930
<A NAME="RM04807SS-44E">44e</A> See also:
Feely WE.
Beavers EM.
J. Am. Chem. Soc.
1959,
81:
4004
For later reports, see:
<A NAME="RM04807SS-44F">44f</A>
Matsumura E.
Ariga M.
Ohfuji T.
Bull. Chem. Soc. Jpn.
1970,
43:
3210
<A NAME="RM04807SS-44G">44g</A>
Botteghi C.
Schionato A.
Chelucci G.
Brunner H.
Kürzinger A.
Obermann U.
J. Organomet. Chem.
1989,
370:
17
<A NAME="RM04807SS-44H">44h</A>
Ashimori A.
Ono T.
Uchida T.
Ohtaki Y.
Fukaya C.
Watanabe M.
Yokoyama K.
Chem. Pharm. Bull.
1990,
38:
2446
<A NAME="RM04807SS-44I">44i</A>
Hibino S.
Sugino E.
J. Heterocycl. Chem.
1990,
27:
1751
<A NAME="RM04807SS-44J">44j</A>
See also reviews cited in ref. 36.
<A NAME="RM04807SS-45">45</A>
A solvent screen for the O-methylation of 3 with dimethyl sulfate (data not shown) revealed MeCN(homogeneous) and butyl acetate(biphasic)
as the most favorable solvents. In MeCN, the O-methylation is very clean and proceeds
at a somewhat lower (55-60 °C) temperature than in butyl acetate (85-90 °C). On the
other hand, butyl acetate results in a clear biphasic mixture with a lower, purple
N-oxide salt phase (‘ionic liquid layer’), that can be readily separated and employed
for reaction with nucleophiles in other solvents, and a clear, upper phase (butyl
acetate) containing most of the m-chlorobenzoic acid. Although the cyanide reaction also proceeds under nonaqueous
conditions, NH4Cl-buffered aqueous cyanide provides the cleanest reaction and highest yield. A ‘blank
reaction’ with NH4Cl alone did not yield the 6-chloro product, in accordance with the observations made
with tetraalkylammonium halides under forcing conditions (vide infra).48
<A NAME="RM04807SS-46">46</A>
Increasing the steric bulk of the alkylating agent (EtI, i-PrI) did not change the regioselectivity. Other cyanating reagents [BzCN, TMSCN,62 (EtO)2P=O(CN)63] did not lead to cyanated azaindole (data not shown).
<A NAME="RM04807SS-47">47</A>
As clearly evidenced by 3
J
4,5 (8 Hz), which is the typical coupling observed between the m-, and p-protons in ortho-substituted pyridines.64
<A NAME="RM04807SS-48">48</A>
Contrary to Ohshiro’s report35 (vide supra, Scheme
[1]
), 6-chloroazaindole was not observed as a side-product under our conditions. In test
reactions of 4 with TBACl, TBABr and TBAI under forcing conditions (data not shown), no reaction
occurred with the chloride, whereas the bromide and iodide reacted via the demethylation
pathway (formation of MeBr and MeI, respectively). Thus, it appears the nature of
the leaving group at N7 strongly determines the site of nucleophilic attack at the
ambident electrophile 4.
<A NAME="RM04807SS-49A">49a</A>
Vorbrüggen H.
Krolikiewicz K.
Synthesis
1983,
316
<A NAME="RM04807SS-49B">49b</A>
Fife WK.
J. Org. Chem.
1983,
48:
1375
<A NAME="RM04807SS-50">50</A> In pyridine chemistry, 2-(alkyl/aryl)sulfonyl groups are often used to introduce
heteroatom substituents ortho to the ring nitrogen; as a rule, they are more reactive than the corresponding 2-halo
compounds, see:
Furukawa N.
Ogawa S.
Kawai T.
Oae S.
J. Chem. Soc., Perkin Trans. 1
1984,
1839
<A NAME="RM04807SS-51">51</A> The reactivity of the O-methyl-7-azaindole-N-oxide salt 4 towards alcoholates, thiolates and azoles was somewhat surprising considering the
earlier unsuccessful attempts to obtain the same types of addition products from Reissert-Henze
reactions of N-methoxypyridinium salts, see: Kiselyov A. S., Strekowski L.; J. Heterocycl. Chem.; 1993, 30: 1361
<A NAME="RM04807SS-52">52</A>
In the absence of a stronger base (typically Hünig base or K2CO3), N-methylation of the azoles dominates (data not shown). 6-N-(Heteroaromatic)-substituted 7-azaindoles have not been reported (CAS/Beilstein,
July 2007). Trace amounts of the 4-isomer are readily removed during purification;
all yields are isolated yields for chromatographed products (typically ≥95A% HPLC).
<A NAME="RM04807SS-53">53</A>
Crude 6-amino adducts are typically ∼85A% LC-pure already and require minimal purification.
<A NAME="RM04807SS-54">54</A>
It is more convenient to isolate the hitherto unknown MCBA complex 28 of 4-chloro-7-azaindole-N-oxide than the free base, since the isolation of the latter typically leads to reduced
yields.27b,28 A convenient protocol is given in the experimental part (vide supra).
<A NAME="RM04807SS-55">55</A>
Chiral N-(7-azaindolyl)-α-amino acids have not been reported (CAS/Beilstein searches July
2007).
<A NAME="RM04807SS-56">56</A>
Katritzky AR.
Lunt E.
Tetrahedron
1969,
25:
4291
<A NAME="RM04807SS-57">57</A>
Abramovitch RA.
Smith EM.
Chem. Heterocycl. Comp.
1974,
14 (Suppl. 2):
1
<A NAME="RM04807SS-58">58</A>
Contrary to the behavior of the corresponding N,O- and
N,S-isosters of pyrrolo[2,3-b]pyridine, where both thieno[2,3-b]-65 as well as furo[2,3-b]pyridine-N-oxide40 have been reported to give the α-cyanated product in good yields in the Reissert-Henze
reaction with benzoyl chloride and cyanide.
<A NAME="RM04807SS-59">59</A> For pyridinium salts, regioselectivity of nucleophilic attack to yield either
1,2- or 1,4-dihydropyridines has been explained by the formation of charge-transfer
complexes,62 by Pearson’s HSAB-concept,66 and by kinetic versus thermodynamic control;67 for a review, see:
Poddubnyi IS.
Chem. Heterocycl. Comp.
1995,
31:
682
<A NAME="RM04807SS-60">60</A> To the best of our knowledge, no other reports on Reissert-Henze type reactions
of 7-azaindole-N-oxide have appeared in the literature (CAS/Beilstein searches June 2007). On the
other hand, Popp et al. had reported on a failed attempt to obtain cyanated azaindole
via the classical Reissert reaction conditions:
Veeraraghavan S.
Popp FD.
J. Heterocycl. Chem.
1981,
18:
909
<A NAME="RM04807SS-61">61</A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RM04807SS-62">62</A>
Kosower EM.
J. Am. Chem. Soc.
1956,
78:
3497
<A NAME="RM04807SS-63">63</A>
Harusawa S.
Hamada Y.
Shioiri T.
Heterocycles
1981,
15:
981
<A NAME="RM04807SS-64">64</A>
Pretsch E.
Seibl J.
Clerc T.
Simon W.
Spectral Data for Structure Determination of Organic Compounds
Springer-Verlag;
Heidelberg:
1989.
2nd ed..
p.H275
<A NAME="RM04807SS-65">65</A>
Klemm LH.
Muchiri DR.
J. Heterocycl. Chem.
1983,
20:
213
<A NAME="RM04807SS-66">66</A>
Lyle RE.
Gauthier GJ.
Tetrahedron Lett.
1965,
6:
4615
<A NAME="RM04807SS-67">67</A>
Damji SWH.
Fyfe CA.
Smith D.
Sharom FJ.
J. Org. Chem.
1979,
44:
1761