Synthesis 2008(2): 201-214  
DOI: 10.1055/s-2007-1000853
PAPER
© Georg Thieme Verlag Stuttgart · New York

The First Practical and Efficient One-Pot Synthesis of 6-Substituted 7-Azaindoles via a Reissert-Henze Reaction

Thomas Storz*a,1, Michael D. Bartbergerb, Steven Sukitsb, Chris Wildeb, Troy Soukupc
a Chemical Process R & D, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
Fax: +1(845)6025561; e-Mail: storzt@wyeth.com;
b Molecular Structure & Modelling, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
c Process Analytical Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
Further Information

Publication History

Received 19 June 2007
Publication Date:
18 December 2007 (online)

Abstract

A variety of 6-substituted 7-azaindoles (30 examples) were obtained via selective O-methylation of 7-azaindole-N-oxide m-chlorobenzoic acid salt and subsequent, base-catalyzed one-pot reaction with a range of N-, O-, S-nucleophiles or cyanide.

    References

  • 2 Kruber O. Ber. Dtsch. Chem. Ges.  1943,  76:  128 
  • 3a First synthesis of 7-azaindole: Clemo GR. Swan GA. J. Chem. Soc.  1945,  603 
  • Improved versions:
  • 3b Robison M. Robison B. J. Am. Chem. Soc.  1955,  77:  457 
  • 3c See also: Lorenz RR. Tullar BF. Koelsch CF. Archer S. J. Org. Chem.  1965,  30:  2531 
  • 3d See also: Hands D. Bishop B. Cameron M. Edwards JS. Cottrell IF. Wright SHB. Synthesis  1996,  877 
  • For reviews, see:
  • 3e Willette RE. Adv. Heterocycl. Chem.  1968,  9:  27 
  • 3f Yakhontov LN. Khim. Geterotsikl. Soedin.  1982,  1155 
  • 3g Mérour J.-Y. Benoît J. Curr. Org. Chem.  2001,  5:  471 
  • 3h Popowycz F. Routier S. Benoît J. Mérour J.-Y. Tetrahedron  2007,  63:  1031 
  • 3i For a review on synthetic methodology for (partially) hydrogenated pyrrolopyridines, see: Varlamov AV. Borisova TN. Voskressensky LG. Synthesis  2002,  155 
  • 4 Jachontow LN. Pharmazie  1963,  18:  317 , and references cited therein
  • 5a Kidder and co-workers were the first to report that 7-azaindoles can act as antimetabolites for the corresponding indole compounds in biological pathways: Kidder GW. Dewey VC. Biochim. Biophys. Acta  1955,  17:  288 
  • 5b For an early review on studies of biological activity of 7-azaindoles, see: Yakhontov LN. Prokopov AA. Russ. Chem. Rev. (Engl. Transl.)  1980,  49:  428 
  • Especially since the year 2000, the medicinal chemistry literature on pharmaceutically active 7-azaindole derivatives has increased exponentially; among others, their use has been reported in the following categories:
  • 6a As constituents of anti-inflammatories: Saify ZN. Pakistan J. Pharmacol.  1985,  2:  43 
  • 6b See also: Henry JR. Dodd JH. Tetrahedron Lett.  1998,  39:  8763 
  • 6c As anxiolytics: Meade EA. Beauchamp LM. J. Heterocycl. Chem.  1996,  33:  303 
  • 6d As plant antifungals: Minakata S. Hamada T. Komatsu M. Tsuboi H. Kikuta H. Ohshiro Y. J. Agric. Food Chem.  1997,  45:  2345 
  • 6e As corticotropin releasing hormone antagonists: Hodge CN. Aldrich PE. Wasserman ZR. Fernandez CH. Nemeth GA. Arvanitis A. Cheeseman RS. Chorvat RJ. Ciganek E. Christos TE. Gilligan PJ. Krenitsky P. Scholfield E. Strucely P. J. Med. Chem.  1999,  42:  819 
  • 6f As antipsychotic agents: Kulagowski JJ. Broughton HB. Curtis NR. Mawer IM. Ridgill MP. Baker R. Emms F. Freedmann SB. Marwood R. Patel S. Ragan CI. Leeson PD. J. Med. Chem.  1996,  39:  1941 
  • 6g As antitussive agents: Allegretti M. Anacardio R. Cesta MC. Curti R. Mantovanini M. Nano G. Topai A. Zampella G. Org. Process Res. Dev.  2003,  7:  209 
  • 6h Soundararajan N, Benoit S, and Gingras S. inventors; US Patent Appl.  2004/0044025. As antivirals/anti-HIV agents:
  • 6i See also: Reeves JD. Piefer AJ. Drugs  2005,  65:  1747 
  • 6j See also: Yang A. Zadjura L. D’Arienzo AM. Santone K. Llunk L. Green D. Lin P.-F. Colonno R. Wang T. Neanwell N. Hansel S. Biopharm. Drug Dispos.  2005,  26:  387 
  • 6k As PPARγ modulators: Dropinski JF. Akiyama T. Einstein M. Habulihaz B. Doebber T. Berger JP. Meinke PT. Shi GQ. Bioorg. Med. Chem. Lett.  2005,  15:  5035 
  • 6l Tabart M, Bacque E, Halley F, Ronan B, Desmazeau P, Viviani F, and Souaille C. inventors; French Patent  2884821. As inhibitors of various kinases (FAK, KDR, Tie2, Aurora, JNK):
  • 6m Patel VF, Askew B, Booker S, Chen G, Dipietro LV, Germain J, Habgood GJ, Huang Q, Kim T, Li A, Nishimura N, Nomak R, Riahi B, Yuan CC, and Elbaum D. inventors; US Patent Appl.  2003/3203922. See also:
  • 6n Rodgers JD, Wang H, Combs AP, and Sparks RB. inventors; PCT Int. Appl. WO  2006069080. See also:
  • 6o Graczyk P, Khan A, Bhatia G, and Limura Y. inventors; PCT Int. Appl. WO  2004078756. See also:
  • 6p As dopamine d-4 receptor ligands: Le Hyaric M. de Almeida MV. de Souza MVN. Quim. Nova  2002,  25:  1165 
  • 6q As gonadotropin releasing hormone antagonists: Ujjainwalla F. Walsh TF. Tetrahedron Lett.  2001,  42:  6441 
  • 6r As GSK-3β inhibitors: O’Neill DJ. Shen L. Prouty C. Conway BR. Westover L. Xu JZ. Zhang H.-C. Maryanoff BE. Murray WV. Demarest KT. Kuo G.-H. Bioorg. Med. Chem.  2004,  12:  3167 
  • 6s As p38 MAP kinase inhibitors: Expert Opin. Ther. Pat.  2004,  15:  227 
  • 6t As Rho kinase inhibitors: Ishizaki T. Uehata M. Tamechika I. Keel J. Nonomura K. Maekawa M. Narumiya S. Mol. Pharm.  2000,  57:  976 
  • 6u As CDK1 inhibitors: Huang S. Li R. Connolly PJ. Emanuel S. Middleton SA. Bioorg. Med. Chem. Lett.  2006,  16:  4818 
  • 6v As cannabimimetics: Gluszok S. Goossens L. Depreux P. Barbry D. Hénichart J.-P. Synth. Commun.  2006,  36:  2797 
  • 6w As antihistamines: Fonquerna S. Miralpeix M. Pagès L. Puig C. Cardús A. Antón F. Vilella D. Aparici M. Prieto J. Warrellow G. Beleta J. Ryder H. Bioorg. Med. Chem. Lett.  2005,  15:  1165 
  • 6x As melatonin analogues: Larraya C. Guillard J. Renard P. Audinot V. Boutin JA. Delegrange P. Bennejean C. Viaud-Massuard M.-C. Eur. J. Med. Chem.  2004,  39:  515 
  • 6y As staurosporin analogues: Routier S. Ayerbe N. Mérour J.-Y. Coudert G. Bailly C. Pierré A. Pfeifer B. Caignard D.-H. Renard P. Tetrahedron  2002,  58:  6621 
  • 6z As rebeccamycin analogues: Messaoudi S. Anizon F. Pfeiffer B. Prudhomme M. Tetrahedron  2005,  61:  7304 
  • Hofgen N, Egerland U, Kronbach T, Marx D, Szelenyi S, Kuss H, and Polymeropoulos E. inventors; US Patent Appl.  2006/258700. (aa) As PDE-4 inhibitors:
  • Beswick P, Gleave R, and Swarbrick M. inventors; PCT Int. Appl. WO  2005016924. (bb) As COX-2 inhibitors:
  • 7a Rodriguez J. Feraud M. Spec. Chem. Mag.  2005,  25:  16 
  • 7b Popowycz F. Routier S. Joseph B. Mérour J.-Y. Tetrahedron  2007,  63:  1031 
  • 8a Kim YK, Lee SJ, Ko JJ, Lee TG, Jung I, and Song KH. inventors; Korean Patent Appl. KR  2006/001405. 
  • 8b Catalan J. Chem. Phys. Lett.  2006,  423:  395 
  • 8c Wu P.-W. Hsieh W.-T. Cheng Y.-M. Wei C.-Y. Chou P.-T. J. Am. Chem. Soc.  2006,  128:  14426 
  • 8d Huang W.-H. Jia W.-L. Wang S. Can. J. Chem.  2006,  84:  477 
  • 8e Tani K. Sakurai H. Fujii H. Hirao T. J. Organomet. Chem.  2004,  689:  1665 
  • 9 Hynes J. Doubleday WW. Dyckman AJ. Godfrey JD. Grosso JA. Kiau S. Leftheris K. J. Org. Chem.  2004,  69:  1368 
  • 10 Yokoyama M. Nomura M. Togo H. Seki H. J. Chem. Soc., Perkin Trans. 1  1996,  2145 
  • 11a Galvez C. Viladomes P. J. Heterocycl. Chem.  1984,  21:  421 
  • 11b Alvarez M. Fernandez D. Joule JA. Synthesis  1999,  615 
  • 11c Cai Z. Feng J. Guo Y. Li P. Shen Z. Chu F. Guo Z. Bioorg. Med. Chem.  2006,  14:  866 
  • 12a Galvez C. Viladoms P. J. Heterocycl. Chem.  1982,  19:  665 
  • 12b Shadrina LP. Dormidontov YP. Ponomarev VG. Lapkin II. Khim. Geterotsikl. Soedin.  1987,  1206 
  • 12c Song D. Liu S.-F. Wang R.-Y. Wang S. J. Organomet. Chem.  2001,  631:  175 
  • 12d Zhang Z. Yang Z. Wong H. Zhu J. Meanwell NA. Kadow JF. Wang T. J. Org. Chem.  2002,  67:  6226 
  • 12e Allegretti M. Anacardio R. Cesta MC. Curti R. Mantovanini M. Nano G. Topai A. Zampella G. Org. Process Res. Dev.  2003,  7:  209 
  • 12f Helgen C. Bochet CG. Heterocycles  2006,  67:  797 
  • 13a Wu Q. Hook A. Wang S. Angew. Chem. Int. Ed.  2000,  39:  3933 
  • 13b Tani K. Sakurai H. Fujii H. Hirao T. J. Organomet. Chem.  2004,  689:  1665 
  • 14 Reisch J. Dittmann S. J. Heterocycl. Chem.  1993,  30:  379 
  • 15a Ferreira PMT. Maia HLS. Monteiro LS. Sacramento J. Sebastião J. J. Chem. Soc., Perkin Trans. 1  2000,  3317 
  • 15b Rolland-Fulcrand V. Haroune N. Roumestant M.-L. Martinez J. Tetrahedron: Asymmetry  2000,  11:  4719 
  • 15c Huck J. Duru C. Roumestant M.-L. Martinez J. Synthesis  2003,  2165 
  • 16 Ahaidar A. Fernandez D. Danelon G. Cuevas C. Manzanares I. Albericio F. Joule JA. Alvarez M. J. Org. Chem.  2003,  68:  10020 
  • 17 Wang K. Stringfellow S. Dong S. Jiao Y. Yu H. Spectrochim. Acta, Part A  2002,  58:  2595 
  • 18a Verbiscar AJ. J. Med. Chem.  1972,  15:  149 
  • 18b Oh S.-J. Lee KC. Lee S.-Y. Ryu EK. Saji H. Choe YS. Chi DY. Kim SE. Lee J. Kim B.-T. Bioorg. Med. Chem.  2004,  12:  5505 
  • 19 Mewshaw RE. Meagher KL. Zhou P. Zhou D. Shi X. Scerni R. Smith D. Schechter LE. Andree TH. Bioorg. Med. Chem. Lett.  2002,  12:  307 
  • 20a Robison MM. Robison BL. J. Am. Chem. Soc.  1955,  77:  457 
  • 20b Eskola O. Bergman J. Lehikoinen P. Haaparanta M. Grönroos T. Forsback S. Solin O. J. Labelled Compd. Radiopharm.  2002,  45:  687 
  • 21 Alfonsi M. Arcadi A. Bianchi G. Marinelli F. Nardini A. Eur. J. Org. Chem.  2006,  2393 
  • 22a Sloan MJ. Phillips RS. Bioorg. Med. Chem. Lett.  1992,  2:  1053 
  • 22b Routier S. Ayerbe N. Merour J.-Y. Coudert G. Bailly C. Pierre A. Pfeiffer B. Caignard D.-H. Renard P. Tetrahedron  2002,  58:  6621 
  • 22c Henon H. Messaoudi S. Hugon B. Anizon F. Pfeiffer B. Prudhommer M. Tetrahedron  2005,  61:  5599 
  • 23a Chlorination: Minakata S. Hamada T. Komatsu M. Tsuboi H. Kikuta H. Ohshiro Y. J. Agric. Food Chem.  1997,  45:  2345 
  • 23b Bromination of N1-unprotected 1 is unknown. For a high-yielding C3 bromination on N1-benzenesulfonyl protected 1, see: Huang S. Li R. Connolly PJ. Emanuel S. Middleton SA. Bioorg. Med. Chem. Lett.  2006,  16:  4818 
  • 23c For regioselective C3 bromination of 2-substituted 7-azaindoles, see: Gallou F. Reeves JT. Tan Z. Song JJ. Yee NK. Harcken C. Liu P. Thomson D. Senanayake CH. Synlett  2007,  211 
  • 23d Iodination: N1-unprotected 3-iodo-7-azaindole is unstable; selective C3 iodination of N1-BOC-protected 1 is possible: Herbert R. Wibberley DG. J. Chem. Soc. C  1969,  1505 
  • 23e See also: Kelly TA. McNeil DW. Rose JM. David E. Shih C.-K. Grob PM. J. Med. Chem.  1997,  40:  2430 
  • 24a Robison MM. Robison BL. Butler FP. J. Am. Chem. Soc.  1959,  81:  743 
  • 24b Yizun J. Adams GE. Parrick J. Stratford IJ. Eur. J. Med. Chem.  1989,  24:  511 
  • 25 Minakata S. Itoh S. Komatsu M. Ohshiro Y. Bull. Chem. Soc. Jpn.  1992,  65:  2992 
  • 26a N1-Protected 7-azaindolin-3-one was obtained from Bayer-Villiger oxidation of the corresponding 3-formyl compound, see: Desarbre E. Mérour J.-Y. Tetrahedron Lett.  1994,  35:  1995 
  • 26b N1-(Me, Et, Bn)-substituted 7-azaisatin was obtained from the parent azaindole via oxidation with NBS/DMSO, see: Tatsugi J. Zhiwei T. Amano T. Izawa Y. Heterocycles  2000,  53:  1145 
  • 27a Clark BAJ. Parrick J. J. Chem. Soc., Perkin Trans. 1  1974,  2270 
  • 27b Schneller SW. Luo J.-K. J. Org. Chem.  1980,  45:  4045 
  • 27c Chen C.-C. Chang C.-P. Yu W.-S. Hung F.-T. Liu Y.-I. Wu G.-R. Chou P.-T. J. Phys. Chem. A  2003,  107:  1459 
  • 27d Soundararajan N, Benoit S, and Gingras S. inventors; US Patent Appl. US  2004/0044025. 
  • 27e Wang X. Zhi B. Baum J. Chen Y. Crockett R. Huang L. Eisenberg S. Ng J. Larsen R. Martinelli M. Reider P. J. Org. Chem.  2006,  71:  4021 
  • 28 Thibault C. L’Heureux A. Bhide RS. Ruel R. Org. Lett.  2003,  5:  5023 
  • 29 Antonini I. Claudi F. Cristalli G. Franchetti P. Grifantini M. Martelli S. J. Med. Chem.  1982,  25:  1258 
  • 4-Halo-7-azaindoles have been used as intermediates for other 4-substituted and also polysubstituted 7-azaindoles, for recent examples, see:
  • 30a Allegretti M. Arcadi A. Marinelli F. Nicolini L. Synlett  2001,  609 
  • 30b L’Heureux A. Thibault C. Ruel R. Tetrahedron Lett.  2004,  45:  2317 
  • 30c Thutewohl M. Schirok H. Bennabi S. Figueroa-Pérez S. Synthesis  2006,  629 
  • 30d

    For a more comprehensive overview, see Refs. 3c,d.

  • 31a 5-Bromo-7-azaindole (four steps from 1): Mazéas D. Guillaumet G. Viaud M.-C. Heterocycles  1999,  50:  1065 
  • 31b

    For a synthesis of 4,5-disubstituted 7-azaindoles from 4-substituted 7-azaindoles via directed ortho-metalation, see ref. 30b.

  • 32 See the recent comparison of synthetic routes for 5-amino-7-azaindole: Pearson SE. Nandan S. Synthesis  2005,  2503 
  • 33a Metalation and quenching with electrophiles of N1-arylsulfonyl-protected 7-azaindole: Desarbre E. Coudret S. Meheust C. Mérour J.-Y. Tetrahedron  1997,  53:  3637 
  • 33b See also: Joseph B. Da Costa H. Mérour J.-Y. Léonce S. Tetrahedron  2000,  56:  3189 
  • 33c Arylation of N1-SEM-protected 7-azaindole: Touré BB. Lane BS. Sames D. Org. Lett.  2006,  8:  1979 
  • 34 Robison et al. had obtained 6-oxo-7-azaindole via dehydrogenation, followed by acetyl group hydrolysis, of a mixture of 5- and 6-acetoxy-1-acetyl-7-azaindoline: Robison MM. Robison BL. Butler FP. J. Am. Chem. Soc.  1959,  81:  743 
  • 35a Minakata S. Komatsu M. Ohshiro Y. Synthesis  1992,  661 
  • The 6-halo-7-azaindoles described have been used as starting materials for various transition metal-catalyzed C-C coupling reactions, see:
  • 35b Minakata S. Itoh S. Komatsu M. Ohshiro Y. Bull. Chem. Soc. Jpn.  1992,  65:  2992 
  • 35c

    See also ref. 30a.

  • 35d Recently, a seven-step de novo synthesis of a new cross coupling-reagent, N1-benzyl-6-triflyloxy-7-azaindole, has been reported, see: Kerr M. Zheng X. Org. Lett.  2006,  8:  3777 
  • 36a Henze M. Ber. Dtsch. Chem. Ges.  1936,  69:  1566 
  • 36b Katritzky AR. Lagowski JM. Chemistry of the Heterocyclic N-Oxides   Academic Press; New York: 1971.  p.300-303  
  • 36c Hayashi E. Higashino T. Heterocycles  1979,  12:  837 
  • 36d Fife WK. Scriven EFV. Heterocycles  1984,  22:  2375 ; and references cited therein
  • 36e Yakhontov LN. Krasnokutskaya DM. Akalaev AN. Palant IN. Vainshtein YuI. Khim. Geterotsikl. Soedin.  1971,  789 
  • 36f Fife WK. Boyer BD. Heterocycles  1984,  22:  1121 
  • 36g Comins DL. Joseph SP. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; London: 1996.  p.70-78  
  • Indirect syntheses of 6-amino-substituted 7-azaindoles have been achieved by: (1) reacting the corresponding 6-halo-7-azaindole with ammonia or amines, but, as a rule, require extended autoclaving at high temperatures/pressures,35a,b and (2) by extended heating at high temperatures of the corresponding 6-chloro-7-azaindoline with amines and subsequent oxidation to the azaindole, see:
  • 37a Yakhontov LN. Krasnokutskaya DM. Akalaev AN. Dokl. Akad. Nauk SSSR  1970,  192:  118 
  • 37b See also: Yutilov YuM. Svertilova IA. Khim. Geterotsikl. Soedin.  1986,  91 
  • 37c Oxidation/cyclization/elimination/decarboxylation of a 2,6-diaminosubstituted pyridyl-3-β-keto ester: Sanders WJ. Zhang X. Wagner R. Org. Lett.  2004,  6:  4527 
  • 38 Germain J, Askew BC, Bauer D, Choquette D, Dipietro LV, Graceffa R, Harmanage J.-C, Huang Q, Kim JL, La D, Li A, Nishimura N, Nomack R, Patel V, Potashman M, Riahi B, Storz T, Van der Plas S, Yang K, and Yuan C. inventors; PCT Int. Appl. WO  2007/048070. 
  • 39 Cox PJ, Majid TN, Lai JYQ, Morley AD, Amendola S, Deprets S, and Edlin C. inventors; PCT Int. Appl. WO  2001047922. 
  • 40 Shiotani S. Taniguchi K. J. Heterocycl. Chem.  1997,  34:  493 
  • 44a Ochiai and Nakayama were the first to report the formation of a cyanopyridine (2-cyano-4-chloropyridine) from the reaction of cyanide with the corresponding O-alkyl pyridinium salt: Ochiai E. Nakayama I. Yakugaku Zasshi  1945,  65:  7 ; Chem. Abstr. 1945, 45, 49933
  • The reaction was rediscovered and expanded independently by Okamoto/Tani and Feely/Beavers:
  • 44b Okamoto T. Tani H. Chem. Pharm. Bull  1959,  7:  130 
  • 44c See also: Okamoto T. Tani H. Chem. Pharm. Bull  1959,  7:  925 
  • 44d See also: Okamoto T. Tani H. Chem. Pharm. Bull  1959,  7:  930 
  • 44e See also: Feely WE. Beavers EM. J. Am. Chem. Soc.  1959,  81:  4004 
  • For later reports, see:
  • 44f Matsumura E. Ariga M. Ohfuji T. Bull. Chem. Soc. Jpn.  1970,  43:  3210 
  • 44g Botteghi C. Schionato A. Chelucci G. Brunner H. Kürzinger A. Obermann U. J. Organomet. Chem.  1989,  370:  17 
  • 44h Ashimori A. Ono T. Uchida T. Ohtaki Y. Fukaya C. Watanabe M. Yokoyama K. Chem. Pharm. Bull.  1990,  38:  2446 
  • 44i Hibino S. Sugino E. J. Heterocycl. Chem.  1990,  27:  1751 
  • 44j

    See also reviews cited in ref. 36.

  • 49a Vorbrüggen H. Krolikiewicz K. Synthesis  1983,  316 
  • 49b Fife WK. J. Org. Chem.  1983,  48:  1375 
  • 50 In pyridine chemistry, 2-(alkyl/aryl)sulfonyl groups are often used to introduce heteroatom substituents ortho to the ring nitrogen; as a rule, they are more reactive than the corresponding 2-halo compounds, see: Furukawa N. Ogawa S. Kawai T. Oae S. J. Chem. Soc., Perkin Trans. 1  1984,  1839 
  • 51 The reactivity of the O-methyl-7-azaindole-N-oxide salt 4 towards alcoholates, thiolates and azoles was somewhat surprising considering the earlier unsuccessful attempts to obtain the same types of addition products from Reissert-Henze reactions of N-methoxypyridinium salts, see: Kiselyov A. S., Strekowski L.; J. Heterocycl. Chem.; 1993, 30: 1361
  • 56 Katritzky AR. Lunt E. Tetrahedron  1969,  25:  4291 
  • 57 Abramovitch RA. Smith EM. Chem. Heterocycl. Comp.  1974,  14 (Suppl. 2):  1 
  • 59 For pyridinium salts, regioselectivity of nucleophilic attack to yield either 1,2- or 1,4-dihydropyridines has been explained by the formation of charge-transfer complexes,62 by Pearson’s HSAB-concept,66 and by kinetic versus thermodynamic control;67 for a review, see: Poddubnyi IS. Chem. Heterocycl. Comp.  1995,  31:  682 
  • 60 To the best of our knowledge, no other reports on Reissert-Henze type reactions of 7-azaindole-N-oxide have appeared in the literature (CAS/Beilstein searches June 2007). On the other hand, Popp et al. had reported on a failed attempt to obtain cyanated azaindole via the classical Reissert reaction conditions: Veeraraghavan S. Popp FD. J. Heterocycl. Chem.  1981,  18:  909 
  • 61 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
  • 62 Kosower EM. J. Am. Chem. Soc.  1956,  78:  3497 
  • 63 Harusawa S. Hamada Y. Shioiri T. Heterocycles  1981,  15:  981 
  • 64 Pretsch E. Seibl J. Clerc T. Simon W. Spectral Data for Structure Determination of Organic Compounds   Springer-Verlag; Heidelberg: 1989.  2nd ed.. p.H275 
  • 65 Klemm LH. Muchiri DR. J. Heterocycl. Chem.  1983,  20:  213 
  • 66 Lyle RE. Gauthier GJ. Tetrahedron Lett.  1965,  6:  4615 
  • 67 Damji SWH. Fyfe CA. Smith D. Sharom FJ. J. Org. Chem.  1979,  44:  1761 
1

New address: Wyeth Research, 401 N. Middletown Road, Pearl River, NY 109, USA.

41

CAS & Beilstein online searches, June 2007.

42

The MCBA salt 3 is the most practical way to isolate the N-oxide 2 as it readily precipitates from a number of nonpolar solvents during the oxidation of 1 with MCPBA (cf. refs. 27b,d,e). On the other hand, upon freebasing, 20%27d to 50%27e loss is typically incurred due to the high water solubility of 2.

43

Methyl ester formation of MCBA was also not observed.

45

A solvent screen for the O-methylation of 3 with dimethyl sulfate (data not shown) revealed MeCN(homogeneous) and butyl acetate(biphasic) as the most favorable solvents. In MeCN, the O-methylation is very clean and proceeds at a somewhat lower (55-60 °C) temperature than in butyl acetate (85-90 °C). On the other hand, butyl acetate results in a clear biphasic mixture with a lower, purple N-oxide salt phase (‘ionic liquid layer’), that can be readily separated and employed for reaction with nucleophiles in other solvents, and a clear, upper phase (butyl acetate) containing most of the m-chlorobenzoic acid. Although the cyanide reaction also proceeds under nonaqueous conditions, NH4Cl-buffered aqueous cyanide provides the cleanest reaction and highest yield. A ‘blank reaction’ with NH4Cl alone did not yield the 6-chloro product, in accordance with the observations made with tetraalkylammonium halides under forcing conditions (vide infra).48

46

Increasing the steric bulk of the alkylating agent (EtI, i-PrI) did not change the regioselectivity. Other cyanating reagents [BzCN, TMSCN,62 (EtO)2P=O(CN)63] did not lead to cyanated azaindole (data not shown).

47

As clearly evidenced by 3 J 4,5 (8 Hz), which is the typical coupling observed between the m-, and p-protons in ortho-substituted pyridines.64

48

Contrary to Ohshiro’s report35 (vide supra, Scheme [1] ), 6-chloroazaindole was not observed as a side-product under our conditions. In test reactions of 4 with TBACl, TBABr and TBAI under forcing conditions (data not shown), no reaction occurred with the chloride, whereas the bromide and iodide reacted via the demethylation pathway (formation of MeBr and MeI, respectively). Thus, it appears the nature of the leaving group at N7 strongly determines the site of nucleophilic attack at the ambident electrophile 4.

52

In the absence of a stronger base (typically Hünig base or K2CO3), N-methylation of the azoles dominates (data not shown). 6-N-(Heteroaromatic)-substituted 7-azaindoles have not been reported (CAS/Beilstein, July 2007). Trace amounts of the 4-isomer are readily removed during purification; all yields are isolated yields for chromatographed products (typically ≥95A% HPLC).

53

Crude 6-amino adducts are typically ∼85A% LC-pure already and require minimal purification.

54

It is more convenient to isolate the hitherto unknown MCBA complex 28 of 4-chloro-7-azaindole-N-oxide than the free base, since the isolation of the latter typically leads to reduced yields.27b,28 A convenient protocol is given in the experimental part (vide supra).

55

Chiral N-(7-azaindolyl)-α-amino acids have not been reported (CAS/Beilstein searches July 2007).

58

Contrary to the behavior of the corresponding N,O- and N,S-isosters of pyrrolo[2,3-b]pyridine, where both thieno[2,3-b]-65 as well as furo[2,3-b]pyridine-N-oxide40 have been reported to give the α-cyanated product in good yields in the Reissert-Henze reaction with benzoyl chloride and cyanide.