References and Notes
<A NAME="RS07907ST-1A">1a</A>
Hopkins JME.
Gorobets E.
Wheatley BMM.
Parvez M.
Keay BA.
Synlett
2006,
3120
<A NAME="RS07907ST-1B">1b</A>
Gorobets E.
Parvez M.
Wheatley BMM.
Keay BA.
Can. J. Chem.
2006,
84:
93
<A NAME="RS07907ST-1C">1c</A>
Hopkins JM.
Parvez M.
Keay BA.
Org. Lett.
2005,
7:
3765
<A NAME="RS07907ST-1D">1d</A>
Gorobets E.
McDonald R.
Keay BA.
Org. Lett.
2006,
8:
1483
<A NAME="RS07907ST-1E">1e</A>
Gorobets E.
Wheatley BMM.
Hopkins JM.
McDonald R.
Keay BA.
Tetrahedron Lett.
2005,
46:
3843
<A NAME="RS07907ST-1F">1f</A>
Gorobets E.
Sun G.-R.
Wheatley BMM.
Parvez M.
Keay BA.
Tetrahedron Lett.
2004,
45:
3597
For synthetic routes to coumarins, see:
<A NAME="RS07907ST-2A">2a</A>
Ellis GP.
Lockhart IM.
Meeder-Nyez D.
Chromenes, Chromanones, and Chromones
Ellis GP.
John Wiley & Sons;
New York:
1977.
<A NAME="RS07907ST-2B">2b</A>
Borges F.
Roleira F.
Milhazes N.
Santana L.
Uriarte E.
Curr. Med. Chem.
2005,
12:
887 ; and references therein
<A NAME="RS07907ST-2C">2c</A>
Chatterjee AK.
Toste FD.
Goldberg SD.
Grubbs RH.
Pure Appl. Chem.
2003,
75:
421
<A NAME="RS07907ST-2D">2d</A>
Nguyen T.
Debenedetti S.
De Kimpe N.
Tetrahedron Lett.
2003,
44:
4199
<A NAME="RS07907ST-2E">2e</A>
Trost BM.
Toste FD.
J. Am. Chem. Soc.
1996,
118:
6305
<A NAME="RS07907ST-2F">2f</A>
Jia C.
Piao D.
Oyamada J.
Lu W.
Kitamura T.
Fujiwara Y.
Science
2000,
287:
1992
<A NAME="RS07907ST-2G">2g</A>
Wu J.
Diao T.
Sun W.
Li Y.
Synth. Commun.
2006,
36:
2949
<A NAME="RS07907ST-3A">3a</A>
Santana L.
Uriarte E.
Roleira F.
Milhazes N.
Borges F.
Curr. Med. Chem.
2004,
11:
3239
<A NAME="RS07907ST-3B">3b</A>
Estévez-Braun A.
González AG.
Nat. Prod. Rep.
1997,
14:
465
<A NAME="RS07907ST-3C">3c</A>
Murray RDH.
Nat. Prod. Rep.
1995,
12:
477
<A NAME="RS07907ST-3D">3d</A>
Kostova I.
Raleva S.
Genova P.
Argirova R.
Bioinorg. Chem. Appl.
2006,
2006:
1
<A NAME="RS07907ST-3E">3e</A>
Murray RDH.
The Naturally Occurring Coumarins
Springer;
New York:
2002.
<A NAME="RS07907ST-4">4</A>
Interestingly, selection of a different proton source significantly improved both
selectivity of the reaction and yield. For example, adding N-Boc-2-methylalanine methyl ester to anion 16 instead of H2O improved the isomeric ratio to 14:1:1.4 in favor of trans-11 and the yield from 48% to 85%.
<A NAME="RS07907ST-5">5</A> It is well known that TMSCl does not react with LDA at -78 °C. See:
Krizan TD.
Martin JC.
J. Am. Chem. Soc.
1983,
105:
6155
<A NAME="RS07907ST-6A">6a</A>
Widhalm M.
Mereiter K.
Bull. Chem. Soc. Jpn.
2003,
76:
1233
<A NAME="RS07907ST-6B">6b</A>
Ogawa S.
Tajiri Y.
Furkawa N.
Bull. Chem. Soc. Jpn.
1991,
64:
3182
<A NAME="RS07907ST-7">7</A>
Alcock NW.
Brown JM.
Pearson M.
Woodward S.
Tetrahedron: Asymmetry
1992,
3:
17
<A NAME="RS07907ST-8">8</A>
Horner L.
Hoffmann H.
Wippel JHG.
Klahre G.
Chem. Ber.
1959,
92:
2499
<A NAME="RS07907ST-9">9</A>
7-Benzyl-6-dimethoxymethyl-3-methyl-4
H
-chromene (19a): To a solution of allylbenzene 1c (0.61 g, 1.45 mmol) in THF (15 mL) was added a solution LDA over 5 min (1.74 mmol)
in THF (6 mL) at -78 °C. After 4 h at this temperature a solution of benzaldehyde
(0.21 g, 2.0 mmol) in THF (3 mL) was added at -78 °C over 5 min upon which the dark
cherry color disappeared. After 15 min of stirring at this temperature the reaction
mixture was allowed to warm to r.t. for 1 h and quenched with aq sat. NH4Cl solution (5 mL) and H2O (5 mL) under stirring. After 10 min the organic phase was separated and the aqueous
one was extracted with CH2Cl2 (2 × 40 mL). The combined organic extract was washed with brine (20 mL), dried over
Na2SO4 and concentrated in vacuo. The residue was forwarded to silica gel column chromatography
(35 g, hexanes-EtOAc-Et3N, 135:15:1) to give oily 19a (0.28 g, 62% yield). Please note 19a was easily oxidized to the corresponding peroxide (like 9) if left exposed to air. 1H NMR (200 MHz, C6D6): δ = 7.58 (s, 1 H, CH), 7.05-7.25 (m, 5 H, CH), 6.91 (s, 1 H, CH), 6.24 (q, J = 1.5 Hz, 1 H, CH), 5.50 [s, 1 H, CH(OMe)2], 4.10 (s, 2 H, Bn), 3.17 (s, 6 H, MeO), 3.05 (s, 2 H, CH2Ar), 1.32 (s, 3 H, Me). 13C NMR (50 MHz, C6D6): δ = 151.2 (C), 140.6 (C), 138.5 (C), 135.1 (CH), 130.7 (C), 128.9 (CH), 128.4 (CH),
128.3 (CH), 125.9 (CH), 118.3 (CH), 116.8 (C), 108.3 (C), 100.9 [CH(OMe)2], 52.0 (MeO), 37.7 (CH2), 28.3 (CH2), 17.5 (Me). IR (film): 3326, 2939, 2908, 2830, 1691, 1626, 1573, 1496, 1452, 1356,
1186, 1108, 1047, 987, 956, 735, 696 cm-1. MS (EI): m/z (rel. intensity) = 165 (11), 178 (14), 231 (11), 247 (100), 277 (11), 278 (100),
310 (38) [M+]. HRMS: m/z [M+] calcd for C20H22O3: 310.1569; found: 310.1546.
<A NAME="RS07907ST-10">10</A>
The moderate yields of this reaction were due to the products being easily oxidized
to their corresponding peroxides upon workup.
<A NAME="RS07907ST-11">11</A> Compounds with similar structures to 24 have displayed interesting fragrances:
Demyttenaere J.
Van Syngel K.
Markusse AP.
Vervisch S.
Debenedetti S.
De Kimpe N.
Tetrahedron
2002,
58:
2163
<A NAME="RS07907ST-12">12</A>
The peroxides did not survive silica gel purification so they were used immediately
in the next reaction. The peroxide was formed in 80-85% yield (by 1H NMR spectroscopy).