Synlett 2007(3): 0503-0504  
DOI: 10.1055/s-2006-967938
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

The Electron: The Simplest Chemical Reagent [1]

Mohammad Rafiee*
Faculty of Chemistry, Bu-Ali Sina University, Hamadan 65174 Iran
e-Mail: m-rafiee@basu.ac.ir;
Further Information

Publication History

Publication Date:
07 February 2007 (online)

Introduction

In this manuscript some new aspects of electroorganic synthesis as a powerful method in organic chemistry are presented. Since the development of the Kolbe reaction in 1854 electrosynthesis has become more and more important in organic chemistry due to its following characteristics: unique selectivity because of in situ formation of an active species at the interface, inversion in polarity by transfer of electron and variability in product formation by control of potential. [2] The most dominant advantage of using this chemical reagent are its adaptability to technology and flexibility in use. The use of water or ionic liquids ­instead of toxic solvents, room temperature condition, high energy efficiency and using the electrode as electron source instead of toxic reagents are in accord with the principle of green chemistry. [3a] Using nanomaterials in the electrode and the synthesis of nanomaterials based on electrochemical polymerization are interfaces with nanotechnology. [4] The use of modified electrodes or electrochemical mediators increases product yields. [5] Also, modification with enzymes provides highest chemo-, ­regio- and stereoselectivity, which is compatible with scopes of biochemistry. [6]

    References

  • 1 The title of this spotlight derives from an expression used by Prof. W. E. Geiger
  • 2 Shono T. Electroorganic Synthesis   Academic Press; San Diego: 1991. 
  • 3a Nematollahi D. Rafiee M. Green Chem.  2005,  7:  638 
  • 3b Nematollahi D. Rafiee M. J. Electroanal. Chem.  2004,  566:  31 
  • 3c Nematollahi D. Habibi D. Rahmati M. Rafiee M. J. Org. Chem.  2004,  69:  2637 
  • 3d Nematollahi D. Goodarzi H. J. Org. Chem.  2002,  67:  5036 
  • 3e Nematollahi D. Workentin MS. Tammari E. Chem. Commun.  2006,  1631 
  • 4a Yang SM. Chen KH. Yang YF. Synth. Met.  2005,  152:  65 
  • 4b Joo J. Park KT. Kim BH. Kim SM. Lee SY. Jeong CK. Lee DH. Park DH. Yi WK. Lee SH. Ryu KS. Synth. Met.  2003,  7:  135 
  • 4c Park DH. Kim BH. Jang KM. Bae KY. Lee SJ. Joo J. Synth. Met.  2005,  153:  341 
  • 5 Chiba K. Jinno M. Nozaki A. Tada M. Chem. Commun.  1997,  1403 
  • 6a Yuan R. Watanabe S. Kuwabata S. Yoneyama H. J. Org. Chem.  1997,  62:  2494 
  • 6b Kawabata S. Iwata N. Yoneyama H. Chem. Lett.  2000,  2:  110 
  • 7a Otero MD. Batanero B. Barba F. Tetrahedron Lett.  2005,  46:  8681 
  • 7b Otero MD. Batanero B. Barba F. Tetrahedron Lett.  2006,  47:  2171 
  • 8 Nafady A. Chin TT. Geiger WE. Organometallics  2006,  25:  1654