Synthesis 2007(2): 320-326  
DOI: 10.1055/s-2006-958940
PSP
© Georg Thieme Verlag Stuttgart · New York

Molybdenum-Catalyzed Synthesis of Stannylated Allylic Alcohol Derivatives and Their Synthetic Applications

Uli Kazmaier*, Sandra Dörrenbächer, Alexander Wesquet, Simon Lucas, Manuela Kummeter
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
Fax: +49(681)3022409; e-Mail: [email protected];
Further Information

Publication History

Received 5 September 2006
Publication Date:
14 December 2006 (online)

Abstract

Mo(CO)3(CNt-Bu)3 (MoBI3) was found to be a suitable catalyst for the regioselective hydrostannation of several types of alkynes, especially propargyl alcohol derivatives, affording preferentially the α-stannylated products. If propargylic acetates are used, the stannylated allylic acetates produced are suitable substrates for Pd-catalyzed allylic alkylations. Allenyl carbinols also undergo regioselective hydrostannation in the presence of MoBI3, because the allenyl carbinols are more reactive than alkynes, and therefore milder reaction conditions are possible. Allylstannanes are formed preferentially, which can easily be converted into allyl iodides or vinyl epoxides.

    References

  • 1 Hegedus LS. Organische Synthese mit Übergangsmetallen   VCH; Weinheim: 1995. 
  • 2 Davies AG. In Comprehensive Organometallic Chemistry II   Vol. 2:  Pergamon; London: 1995.  p.217 
  • 3a Heck RF. Palladium Reagents in Organic Synthesis   Academic Press; New York: 1985. 
  • 3b Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 ; Angew. Chem. 1986, 98, 504
  • 3c Pereyre M. Quintard JP. Rahm A. Tin in Organic Synthesis   Butterworths; London: 1986. 
  • 3d Davies AG. Organotin Chemistry   VCH; Weinheim: 1997. 
  • 4a Allenes in Organic Synthesis   Schuster HF. Copolla GM. Wiley; New York: 1984. 
  • 4b Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004. 
  • 4c Smith ND. Mancuso J. Lautens M. Chem. Rev.  2000,  100:  3257 
  • 5 Gevorgyan V. Liu JX. Yamamoto Y. Chem. Commun.  1998,  37 
  • 6a Ichinose Y. Oshima K. Utimoto K. Bull. Chem. Soc. Jpn.  1988,  61:  2693 
  • 6b Koerber K. Goré J. Valele JM. Tetrahedron Lett.  1991,  32:  1187 
  • 6c Mitchell TN. Schneider U. J. Organomet. Chem.  1991,  405:  195 
  • 6d Gevorgyan V. Liu JX. Yamamoto Y. J. Org. Chem.  1997,  62:  2963 
  • 7 Lautens M. Ostrovsky D. Tao B. Tetrahedron Lett.  1997,  38:  6343 
  • 8a Kazmaier U. Schauß D. Pohlman M. Org. Lett.  1999,  1:  1017 
  • 8b Kazmaier U. Pohlman M. Schauß D. Eur. J. Org. Chem.  2000,  2761 
  • 8c Kazmaier U. Braune S. J. Organomet. Chem.  2002,  641:  2629 
  • 8d Braune S. Pohlman M. Kazmaier U. J. Org. Chem.  2004,  69:  468 
  • 8e Kazmaier U. Wesquet AO. Synlett  2005,  1271 
  • Reviews:
  • 9a Albers MO. Coville NJ. Ashworth TV. Singleton E. Swanepoel HE. J. Organomet. Chem.  1980,  199:  55 
  • 9b Albers MO. Coville NJ. Coord. Chem. Rev.  1984,  53:  227 
  • 10a Kazmaier U. Schauß D. Pohlman M. Raddatz S. Synthesis  2000,  914 
  • 10b Kazmaier U. Schauß D. Raddatz S. Pohlman M. Chem. Eur. J.  2001,  7:  456 
  • 11 Wesquet AO. Dörrenbächer S. Kazmaier U. Synlett  2006,  1105 
  • For some representative examples of microwave assisted cross couplings and one-pot hydrostannation/Stille coupling reactions, see:
  • 13a Larhed M. Hallberg A. J. Org. Chem.  1996,  61:  9582 
  • 13b Olofsson K. Kim S.-Y. Larhed M. Curran DP. Hallberg A. J. Org. Chem.  1999,  64:  4539 
  • 13c Maleczka RE. Lavis JM. Clark DH. Gallagher WP. Org. Lett.  2000,  23:  3655 
  • 14 Burgess K. Jennings JD. J. Am. Chem. Soc.  1991,  113:  6129 
  • 15a Kazmaier U. Klein M. Chem. Commun.  2005,  501 
  • 15b Kazmaier U. Lucas S. Klein M. J. Org. Chem.  2006,  71:  2429 
  • 16a Crisp GT. Glink PT. Tetrahedron  1994,  50:  3213 
  • 16b Dörrenbächer S. Kazmaier U. Ruf S. Synlett  2006,  547 
12

In this case, the slow addition mode gave no significant improvement.