RSS-Feed abonnieren
DOI: 10.1055/s-2006-956488
Organocatalytic Asymmetric Synthesis of 1,2,3-prim,sec,sec-Triols
Publikationsverlauf
Publikationsdatum:
08. Dezember 2006 (online)

Abstract
A tandem organocatalytic asymmetric synthesis of 1,2,3-triols using a,b-unsaturated aldehydes as the substrates and hydrogen peroxide as the oxidant is presented. The reaction can also be applied to the asymmetric synthesis of 3-chloro-1,2-propandiols.
Key words
triols - epoxidation - asymmetric catalysis - epoxide opening - tandem reactions
- 1a 
             
            Kiefel MJ.von Itzstein M. Chem. Rev. 2002, 102: 471
- 1b 
             
            Angata T.Varki A. Chem. Rev. 2002, 102: 439
- 2a 
             
            Kim KW.Lee YJ.Kim JH.Sung DK. Chem. Commun. 2002, 116
- 2b 
             
            Li S.Hui X.-P.Yang SB.Jia Z.-J.Xu D.-F.Lu T.-J. Tetrahedron: Asymmetry 2005, 16: 1729
- 3a 
             
            von Itzstein M.Wu WY.Kok GB.Pegg MS.Dyason JC.Jin B.Jin B.Phan TV.Smythe ML.White HF.Oliver SW.Colman PM.Varghese JN.Ryan DM.Woods JM.Bethell RC.Holtham VJ.Cameron JM.Penn CR. Nature (London) 1993, 363: 418
- 3b 
             
            Fleming DM. Expert Opin. Pharmacol. 2003, 4: 799
- For example of diastereoselective methods, see:
- 4a 
             
            Delton MH.Yuen GU. J. Org. Chem. 1968, 33: 2473
- 4b 
             
            Sabino AA.Pilli RA. Tetrahedron Lett. 2002, 43: 2819
- 4c 
             
            El Ashry ESH.El Kilany Y.Mousaad A. J. Chem. Soc., Perkin Trans. 1 1988, 139
- 4d 
             
            Annunziata R.Mauro CF.Raimondi L.Stefanelli S. Tetrahedron Lett. 1987, 28: 3139
- For selected examples of enzyme-catalyzed methods, see:
- 5a 
             
            Effenberger F.Hopf M.Ziegler T.Hudelmayer J. Chem. Ber. 1991, 124: 1651
- 5b 
             
            Bianchi P.Roda G.Riva S.Danieli B.Zabelinskaja-Mackova A.Griengl H. Tetrahedron 2001, 57: 2213
- 6a 
             
            Katsuki T.Lee AWM.Ma P.Martin VS.Masamune S.Sharpless KB.Tuddenham D.Walker FJ. J. Org. Chem. 1982, 47: 1378
- 6b 
             
            Ko SY.Lee AWM.Masamune S.Reed LA.Sharpless KB.Walker WJ. Science 1983, 220: 249
- 7a 
             
            VanNieuwenhze MS.Sharpless KB. Tetrahedron Lett. 1994, 35: 843
- 7b 
             
            Xu D.Park CY.Sharpless KB. Tetrahedron Lett. 1994, 35: 2495
- 7c 
             
            Lohray BB.Kalantar TH.Kim BM.Park CY.Shibata T.Wai JSM.Sharpless KB. Tetrahedron Lett. 1989, 30: 2041
- 8a 
             
            Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138
- 8b 
             
            Merino P.Tejero T. Angew. Chem. Int. Ed. 2004, 43: 2995
- 8c 
             
            Armstrong A. Angew. Chem. Int. Ed. 2004, 43: 1460
- 8d 
             
            Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3726
- 8e 
             
            List B. Tetrahedron 2002, 58: 5573
- 8f 
             
            Duthaler RO. Angew. Chem. Int. Ed. 2003, 42: 975
- For examples of organocatalytic epoxidations, see:
- 9a 
             
            Julía S.Masana J.Vega JC. Angew. Chem., Int. Ed. Engl. 1980, 19: 929
- 9b 
             
            Julía S.Guixer J.Masana J.Rocas J.Colonna S.Annunziata R.Molinari H. J. Chem. Soc., Perkin Trans. 1 1982, 1317
- 9c 
             
            Helder T.Hummelen JC.Laane RWPM.Wiering JS.Wynberg H. Tetrahedron Lett. 1976, 1831
- 9d 
             
            Corey EJ.Zhang F.-Y. Org. Lett. 1999, 1: 1287
- 9e 
             
            Lygo B.Wainwright PG. Tetrahedron Lett. 1998, 38: 1599
- 9f 
             
            Jew S.-S.Lee J.-H.Jeong B.-S.Yoo M.-S.Kim M.-J.Lee Y.-J.Lee J.Choi S.-H.Lee K.Lah M.-S.Park H.-G. Angew. Chem. Int. Ed. 2005, 44: 1383
- 9g For the use of chiral ketones as catalysts, see:  
            Shi Y. Acc. Chem. Res. 2004, 37: 488 ; and references therein
- 9h For the use of chiral amines, see:  
            Bohe L.Hanquet M.Lusinchi M.Lusinchi X. Tetrahedron Lett. 1993, 34: 7271
- 9i 
             
            Adamo MFA.Aggarwal VK.Sage MA. J. Am. Chem. Soc. 2000, 122: 8317
- 9j 
             
            Lattanzi A. Org. Lett. 2005, 7: 2579
- 9k 
             
            Lattanzi A. Adv. Synth. Catal. 2006, 7: 339
- For a-oxidations with nitrosobenzene, see:
- 10a 
             
            Bøgevig A.Sundén H.Córdova A. Angew. Chem. Int. Ed. 2004, 43: 1109
- 10b 
             
            Córdova A.Sundén H.Bøgevig A.Johansson M.Himo F. Chem. Eur. J. 2004, 10: 3673
- 10c 
             
            Zhong G. Angew. Chem. Int. Ed. 2003, 42: 4247
- 10d 
             
            Brown SP.Brochu MP.Sinz CJ.MacMillan DWC. J. Am. Chem. Soc. 2003, 125: 10808
- 10e 
             
            Hayashi Y.Yamaguchi J.Hibino K.Shoji M. Tetrahedron Lett. 2003, 44: 8293
- 10f 
             
            Hayashi Y.Yamaguchi J.Hibino K.Shoji M. Angew. Chem. Int. Ed. 2004, 43: 1112
- 10g 
             
            Hayashi Y.Yamaguchi J.Sumiya T.Hibino K.Shoji M. J. Org. Chem. 2004, 69: 5966
- 10h 
             
            Momiyama N.Torii H.Saito S.Yamamoto H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5374
- 10i 
             
            Yamamoto Y.Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 5962
- 10j 
             
            Wang W.Wang J.Li H.Liao L. Tetrahedron Lett. 2004, 45: 7235
- For a-oxidations with singlet molecular oxygen, see:
- 10k 
             
            Córdova A.Sundén H.Engqvist M.Ibrahem I.Casas J. J. Am. Chem. Soc. 2004, 126: 8914
- 10l 
             
            Sundén H.Engqvist M.Casas J.Ibrahem I.Córdova A. Angew. Chem. Int. Ed. 2004, 43: 6532
- 10m With other oxidants, see:  
            Engqvist M.Casas J.Sundén H.Ibrahem I.Córdova A. Tetrahedron Lett. 2005, 46: 2053
- 11a 
             
            Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964
- 11b 
             
            Sundén H.Ibrahem I.Córdova A. Tetrahedron Lett. 2006, 47: 99
- 11c 
             
            Zhuang WZ.Marigo M.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 3883
References and Notes
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h.
         Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed
         by addition of NaBH4 (38 mg, 1.0 mmol). The mixture was then stirred for 10 min, quenched with H2SO4 (0.5 N, 8 mL) and EtOAc (8 mL). Next, the reaction mixture was stirred at r.t. for
         1 h. The mixture was separated and the water layer was extracted with EtOAc (6 × 5
         mL). The organic layer was collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography
         (EtOAc) to give the product 2a (53 mg, 63%).
(2R,3S)-1-Phenyl-propane-1,2,3-triol (2a): [a]D
         25 +30.3 (c 1.0, CHCl3); [a]D
         25 +25.3 (c 1.0, H2O), lit.
         [4a]
          [a]D
         23 +19.6 (c 6.3, H2O). 1H NMR (400 MHz, D2O): d (major diastereomer) = 3.64 (dd, J = 7.2, 11.6 Hz, 1 H), 3.82 (dd, J = 3.2, 11.6 Hz, 1 H), 3.94 (ddd, J = 3.2, 7.2, 7.2 Hz, 1 H), 4.67 (d, J = 7.2 Hz, 1 H), 7.41-7.49 (m, 5 H); d (minor diastereomer) = 3.43 (dd, J = 7.2, 12.0 Hz, 1 H), 3.54 (dd, J = 4.0, 12.0 Hz, 1 H), 3.89 (ddd, J = 4.0, 6.4, 7.2 Hz, 1 H), 4.70 (d, J = 6.4 Hz, 1 H), 7.41-7.49 (m, 5 H). 13C NMR (100 MHz, D2O): d (major isomer) = 62.8. 74.1, 74.8, 127.4, 128.4, 128.8, 140.6; d (minor isomer)
         = 62.7. 74.4, 75.7, 126.9, 128.4, 128.9, 140.7. The ee was determined after acetylation
         by HPLC on Daicel Chiralpak OJ with iso-hexane-i-PrOH (85:15) as the eluent; major diastereomer - minor isomer: t
         R = 20.923 min; major isomer: t
         R = 28.299 min; minor diastereomer - minor isomer: t
         R = 36.090 min; major isomer: t
         R = 49.281 min. HRMS (ESI): m/z calcd for C9H12O3Na [M + Na]+: 191.0679; found: 191.0687.
         
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h.
         Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed
         by addition of NaBH4 (38 mg, 1.0 mmol) and the mixture was stirred for 10 min. Next, NaOH (0.5 N, 10 mL)
         and 
         t-BuOH (2 mL) were added and the reaction temperature increased to 70 °C. After 24
         h of stirring at this temperature, the mixture was separated and the water layer was
         extracted with EtOAc (6 × 5 mL). Then the organic layer was collected, dried over
         Na2SO4 and the solvent was removed. The crude residue was purified by silica gel chromatography
         using a gradient system (pentane-EtOAc = 1:1) to give the 2-epoxy alcohol (45 mg)
         and then EtOAc to give the triol 2a (39 mg, 39%).
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h. Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed by addition of NaBH4 (38 mg, 1.0 mmol) After 10 min of stirring, EtOAc (8 mL) and HCl (2 N, 4 mL) were added. The mixture was extracted and the water layer was extracted with EtOAc (3 × 5 mL). The organic layers were collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography (pentane-EtOAc = 1:1) to give 4b (68%). Compound 4b: [a]D 25 +25.7 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): d = 3.78 (dd, J = 6.4, 12.8 Hz, 1 H), 3.85 (dd, J = 3.2, 12.8 Hz, 1 H), 4.01-4.04 (m, 1 H), 4.84 (d, J = 7.6 Hz, 1 H), 7.36 (s, 4 H). 13C NMR (100 MHz, CDCl3): d = 61.3. 63.3, 75.3, 129.1, 129.6, 134.9, 136.6. The ee was determined by HPLC on Agilent Chiralpak AD column with hexane-i-PrOH (90:10) as the eluent; minor isomer: t R = 22.750 min; major isomer: t R = 28.463 min. HRMS (ESI): m/z calcd for C9H10Cl2O2Na [M + Na]+: 242.9950; found: 242.9952.
 
    