References and Notes
<A NAME="RY01506ST-1A">1a</A>
Kiefel MJ.
von Itzstein M.
Chem. Rev.
2002,
102:
471
<A NAME="RY01506ST-1B">1b</A>
Angata T.
Varki A.
Chem. Rev.
2002,
102:
439
<A NAME="RY01506ST-2A">2a</A>
Kim KW.
Lee YJ.
Kim JH.
Sung DK.
Chem. Commun.
2002,
116
<A NAME="RY01506ST-2B">2b</A>
Li S.
Hui X.-P.
Yang SB.
Jia Z.-J.
Xu D.-F.
Lu T.-J.
Tetrahedron: Asymmetry
2005,
16:
1729
<A NAME="RY01506ST-3A">3a</A>
von Itzstein M.
Wu WY.
Kok GB.
Pegg MS.
Dyason JC.
Jin B.
Jin B.
Phan TV.
Smythe ML.
White HF.
Oliver SW.
Colman PM.
Varghese JN.
Ryan DM.
Woods JM.
Bethell RC.
Holtham VJ.
Cameron JM.
Penn CR.
Nature (London)
1993,
363:
418
<A NAME="RY01506ST-3B">3b</A>
Fleming DM.
Expert Opin. Pharmacol.
2003,
4:
799
For example of diastereoselective methods, see:
<A NAME="RY01506ST-4A">4a</A>
Delton MH.
Yuen GU.
J. Org. Chem.
1968,
33:
2473
<A NAME="RY01506ST-4B">4b</A>
Sabino AA.
Pilli RA.
Tetrahedron Lett.
2002,
43:
2819
<A NAME="RY01506ST-4C">4c</A>
El Ashry ESH.
El Kilany Y.
Mousaad A.
J. Chem. Soc., Perkin Trans. 1
1988,
139
<A NAME="RY01506ST-4D">4d</A>
Annunziata R.
Mauro CF.
Raimondi L.
Stefanelli S.
Tetrahedron Lett.
1987,
28:
3139
For selected examples of enzyme-catalyzed methods, see:
<A NAME="RY01506ST-5A">5a</A>
Effenberger F.
Hopf M.
Ziegler T.
Hudelmayer J.
Chem. Ber.
1991,
124:
1651
<A NAME="RY01506ST-5B">5b</A>
Bianchi P.
Roda G.
Riva S.
Danieli B.
Zabelinskaja-Mackova A.
Griengl H.
Tetrahedron
2001,
57:
2213
<A NAME="RY01506ST-6A">6a</A>
Katsuki T.
Lee AWM.
Ma P.
Martin VS.
Masamune S.
Sharpless KB.
Tuddenham D.
Walker FJ.
J. Org. Chem.
1982,
47:
1378
<A NAME="RY01506ST-6B">6b</A>
Ko SY.
Lee AWM.
Masamune S.
Reed LA.
Sharpless KB.
Walker WJ.
Science
1983,
220:
249
<A NAME="RY01506ST-7A">7a</A>
VanNieuwenhze MS.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
843
<A NAME="RY01506ST-7B">7b</A>
Xu D.
Park CY.
Sharpless KB.
Tetrahedron Lett.
1994,
35:
2495
<A NAME="RY01506ST-7C">7c</A>
Lohray BB.
Kalantar TH.
Kim BM.
Park CY.
Shibata T.
Wai JSM.
Sharpless KB.
Tetrahedron Lett.
1989,
30:
2041
<A NAME="RY01506ST-8A">8a</A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RY01506ST-8B">8b</A>
Merino P.
Tejero T.
Angew. Chem. Int. Ed.
2004,
43:
2995
<A NAME="RY01506ST-8C">8c</A>
Armstrong A.
Angew. Chem. Int. Ed.
2004,
43:
1460
<A NAME="RY01506ST-8D">8d</A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
<A NAME="RY01506ST-8E">8e</A>
List B.
Tetrahedron
2002,
58:
5573
<A NAME="RY01506ST-8F">8f</A>
Duthaler RO.
Angew. Chem. Int. Ed.
2003,
42:
975
For examples of organocatalytic epoxidations, see:
<A NAME="RY01506ST-9A">9a</A>
Julía S.
Masana J.
Vega JC.
Angew. Chem., Int. Ed. Engl.
1980,
19:
929
<A NAME="RY01506ST-9B">9b</A>
Julía S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annunziata R.
Molinari H.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
<A NAME="RY01506ST-9C">9c</A>
Helder T.
Hummelen JC.
Laane RWPM.
Wiering JS.
Wynberg H.
Tetrahedron Lett.
1976,
1831
<A NAME="RY01506ST-9D">9d</A>
Corey EJ.
Zhang F.-Y.
Org. Lett.
1999,
1:
1287
<A NAME="RY01506ST-9E">9e</A>
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1998,
38:
1599
<A NAME="RY01506ST-9F">9f</A>
Jew S.-S.
Lee J.-H.
Jeong B.-S.
Yoo M.-S.
Kim M.-J.
Lee Y.-J.
Lee J.
Choi S.-H.
Lee K.
Lah M.-S.
Park H.-G.
Angew. Chem. Int. Ed.
2005,
44:
1383
<A NAME="RY01506ST-9G">9g</A> For the use of chiral ketones as catalysts, see:
Shi Y.
Acc. Chem. Res.
2004,
37:
488 ; and references therein
<A NAME="RY01506ST-9H">9h</A> For the use of chiral amines, see:
Bohe L.
Hanquet M.
Lusinchi M.
Lusinchi X.
Tetrahedron Lett.
1993,
34:
7271
<A NAME="RY01506ST-9I">9i</A>
Adamo MFA.
Aggarwal VK.
Sage MA.
J. Am. Chem. Soc.
2000,
122:
8317
<A NAME="RY01506ST-9J">9j</A>
Lattanzi A.
Org. Lett.
2005,
7:
2579
<A NAME="RY01506ST-9K">9k</A>
Lattanzi A.
Adv. Synth. Catal.
2006,
7:
339
For a-oxidations with nitrosobenzene, see:
<A NAME="RY01506ST-10A">10a</A>
Bøgevig A.
Sundén H.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
1109
<A NAME="RY01506ST-10B">10b</A>
Córdova A.
Sundén H.
Bøgevig A.
Johansson M.
Himo F.
Chem. Eur. J.
2004,
10:
3673
<A NAME="RY01506ST-10C">10c</A>
Zhong G.
Angew. Chem. Int. Ed.
2003,
42:
4247
<A NAME="RY01506ST-10D">10d</A>
Brown SP.
Brochu MP.
Sinz CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
10808
<A NAME="RY01506ST-10E">10e</A>
Hayashi Y.
Yamaguchi J.
Hibino K.
Shoji M.
Tetrahedron Lett.
2003,
44:
8293
<A NAME="RY01506ST-10F">10f</A>
Hayashi Y.
Yamaguchi J.
Hibino K.
Shoji M.
Angew. Chem. Int. Ed.
2004,
43:
1112
<A NAME="RY01506ST-10G">10g</A>
Hayashi Y.
Yamaguchi J.
Sumiya T.
Hibino K.
Shoji M.
J. Org. Chem.
2004,
69:
5966
<A NAME="RY01506ST-10H">10h</A>
Momiyama N.
Torii H.
Saito S.
Yamamoto H.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5374
<A NAME="RY01506ST-10I">10i</A>
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
<A NAME="RY01506ST-10J">10j</A>
Wang W.
Wang J.
Li H.
Liao L.
Tetrahedron Lett.
2004,
45:
7235
For a-oxidations with singlet molecular oxygen, see:
<A NAME="RY01506ST-10K">10k</A>
Córdova A.
Sundén H.
Engqvist M.
Ibrahem I.
Casas J.
J. Am. Chem. Soc.
2004,
126:
8914
<A NAME="RY01506ST-10L">10l</A>
Sundén H.
Engqvist M.
Casas J.
Ibrahem I.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
6532
<A NAME="RY01506ST-10M">10m</A> With other oxidants, see:
Engqvist M.
Casas J.
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2005,
46:
2053
<A NAME="RY01506ST-11A">11a</A>
Marigo M.
Franzén J.
Poulsen TB.
Zhuang W.
Jørgensen KA.
J. Am. Chem. Soc.
2005,
127:
6964
<A NAME="RY01506ST-11B">11b</A>
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2006,
47:
99
<A NAME="RY01506ST-11C">11c</A>
Zhuang WZ.
Marigo M.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3883
<A NAME="RY01506ST-12">12</A>
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h.
Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed
by addition of NaBH4 (38 mg, 1.0 mmol). The mixture was then stirred for 10 min, quenched with H2SO4 (0.5 N, 8 mL) and EtOAc (8 mL). Next, the reaction mixture was stirred at r.t. for
1 h. The mixture was separated and the water layer was extracted with EtOAc (6 × 5
mL). The organic layer was collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography
(EtOAc) to give the product 2a (53 mg, 63%).
(2R,3S)-1-Phenyl-propane-1,2,3-triol (2a): [a]D
25 +30.3 (c 1.0, CHCl3); [a]D
25 +25.3 (c 1.0, H2O), lit.
[4a]
[a]D
23 +19.6 (c 6.3, H2O). 1H NMR (400 MHz, D2O): d (major diastereomer) = 3.64 (dd, J = 7.2, 11.6 Hz, 1 H), 3.82 (dd, J = 3.2, 11.6 Hz, 1 H), 3.94 (ddd, J = 3.2, 7.2, 7.2 Hz, 1 H), 4.67 (d, J = 7.2 Hz, 1 H), 7.41-7.49 (m, 5 H); d (minor diastereomer) = 3.43 (dd, J = 7.2, 12.0 Hz, 1 H), 3.54 (dd, J = 4.0, 12.0 Hz, 1 H), 3.89 (ddd, J = 4.0, 6.4, 7.2 Hz, 1 H), 4.70 (d, J = 6.4 Hz, 1 H), 7.41-7.49 (m, 5 H). 13C NMR (100 MHz, D2O): d (major isomer) = 62.8. 74.1, 74.8, 127.4, 128.4, 128.8, 140.6; d (minor isomer)
= 62.7. 74.4, 75.7, 126.9, 128.4, 128.9, 140.7. The ee was determined after acetylation
by HPLC on Daicel Chiralpak OJ with iso-hexane-i-PrOH (85:15) as the eluent; major diastereomer - minor isomer: t
R = 20.923 min; major isomer: t
R = 28.299 min; minor diastereomer - minor isomer: t
R = 36.090 min; major isomer: t
R = 49.281 min. HRMS (ESI): m/z calcd for C9H12O3Na [M + Na]+: 191.0679; found: 191.0687.
<A NAME="RY01506ST-13">13</A>
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h.
Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed
by addition of NaBH4 (38 mg, 1.0 mmol) and the mixture was stirred for 10 min. Next, NaOH (0.5 N, 10 mL)
and
t-BuOH (2 mL) were added and the reaction temperature increased to 70 °C. After 24
h of stirring at this temperature, the mixture was separated and the water layer was
extracted with EtOAc (6 × 5 mL). Then the organic layer was collected, dried over
Na2SO4 and the solvent was removed. The crude residue was purified by silica gel chromatography
using a gradient system (pentane-EtOAc = 1:1) to give the 2-epoxy alcohol (45 mg)
and then EtOAc to give the triol 2a (39 mg, 39%).
<A NAME="RY01506ST-14">14</A>
To a stirred solution of 3 (16 mg, 20 mol%) in CHCl3 (2 mL) was added trans-cinnamaldehyde (1a, 66 mg, 0.5 mmol) and H2O2 (0.6 mmol, 50% aq solution). The reaction was vigorously stirred at 4 °C for 7 h.
Then the reaction mixture was diluted with EtOH (2 mL) and cooled to 0 °C followed
by addition of NaBH4 (38 mg, 1.0 mmol) After 10 min of stirring, EtOAc (8 mL) and HCl (2 N, 4 mL) were
added. The mixture was extracted and the water layer was extracted with EtOAc (3 ×
5 mL). The organic layers were collected, dried over Na2SO4 and the solvent was removed. The residue was purified by silica gel chromatography
(pentane-EtOAc = 1:1) to give 4b (68%). Compound 4b: [a]D
25 +25.7 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): d = 3.78 (dd, J = 6.4, 12.8 Hz, 1 H), 3.85 (dd, J = 3.2, 12.8 Hz, 1 H), 4.01-4.04 (m, 1 H), 4.84 (d, J = 7.6 Hz, 1 H), 7.36 (s, 4 H). 13C NMR (100 MHz, CDCl3): d = 61.3. 63.3, 75.3, 129.1, 129.6, 134.9, 136.6. The ee was determined by HPLC
on Agilent Chiralpak AD column with hexane-i-PrOH (90:10) as the eluent; minor isomer: t
R = 22.750 min; major isomer: t
R = 28.463 min. HRMS (ESI): m/z calcd for C9H10Cl2O2Na [M + Na]+: 242.9950; found: 242.9952.