References and Notes
<A NAME="RD15506ST-1A">1a</A>
Renaud P.
Sibi MP.
Radicals in Organic Synthesis
Wiley-VCH;
Weinheim:
2001.
<A NAME="RD15506ST-1B">1b</A>
Togo H.
Advanced Free Radical Reactions for Organic Synthesis
Elsevier;
Oxford:
2004.
<A NAME="RD15506ST-1C">1c</A>
McCarroll AJ.
Walton JC.
Angew. Chem. Int. Ed.
2001,
40:
2224
Epibatidine analogues:
<A NAME="RD15506ST-2A">2a</A>
Hodgson DM.
Maxwell CR.
Matthews IR.
Synlett
1998,
1349
<A NAME="RD15506ST-2B">2b</A>
Hodgson DM.
Maxwell CR.
Wisedale R.
Matthews IR.
Carpenter KJ.
Dickenson AH.
Wonnacott S.
J. Chem. Soc., Perkin Trans. 1
2001,
23:
3150
Kainoids:
<A NAME="RD15506ST-2C">2c</A>
Hodgson DM.
Hachisu S.
Andrews MD.
Org. Lett.
2005,
7:
815
<A NAME="RD15506ST-2D">2d</A>
Hodgson DM.
Hachisu S.
Andrews MD.
Synlett
2005,
1267
<A NAME="RD15506ST-2E">2e</A>
Hodgson DM.
Hachisu S.
Andrews MD.
J. Org. Chem.
2005,
70:
8866
<A NAME="RD15506ST-2F">2f</A> Ibogamine:
Hodgson DM.
Galano J.-M.
Org. Lett.
2005,
7:
2221
<A NAME="RD15506ST-3A">3a</A>
Hodgson DM.
Bebbington MWP.
Willis P.
Org. Lett.
2002,
4:
4353
<A NAME="RD15506ST-3B">3b</A>
Hodgson DM.
Bebbington MWP.
Willis P.
Org. Biomol. Chem.
2003,
1:
3787
<A NAME="RD15506ST-4">4</A>
Beletskaya I.
Pelter A.
Tetrahedron
1997,
53:
4957
<A NAME="RD15506ST-5">5</A>
Bebbington MWP.
D. Phil. Thesis
University of Oxford;
Oxford:
2002.
<A NAME="RD15506ST-6A">6a</A>
Brown HC.
Singaram B.
Acc. Chem. Res.
1988,
21:
287
<A NAME="RD15506ST-6B">6b</A>
Brown HC.
Ramachandran PV.
J. Organomet. Chem.
1995,
500:
1
<A NAME="RD15506ST-7">7</A>
Cramer N.
Laschat S.
Baro A.
Frey W.
Synlett
2003,
2175
<A NAME="RD15506ST-8">8</A>
Carpino LA.
Padykula RE.
Barr DE.
Hall FH.
Krause JG.
Dufresne RF.
Thoman CJ.
J. Org. Chem.
1988,
53:
2565
<A NAME="RD15506ST-9">9</A>
Brown HC.
Singaram B.
J. Org. Chem.
1984,
49:
945
<A NAME="RD15506ST-10">10</A>
Determined by chiral HPLC analysis: Chiralcel OD column (4.6 × 250 mm); flow rate:
0.9 mL/min; eluted with 1% EtOH in heptane; t
R(minor) = 24.3 min, t
R(major) = 26.6 min.
<A NAME="RD15506ST-11A">11a</A>
Djerassi C.
Engle RR.
J. Am. Chem. Soc.
1953,
75:
3838
<A NAME="RD15506ST-11B">11b</A>
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
<A NAME="RD15506ST-12">12</A>
Hashimoto N.
Aoyama T.
Shioiri T.
Chem. Pharm. Bull.
1981,
29:
1475
<A NAME="RD15506ST-13">13</A>
Hodgson DM.
Maxwell CR.
Miles TJ.
Paruch E.
Matthews IR.
Witherington J.
Tetrahedron
2004,
60:
3611
<A NAME="RD15506ST-14">14</A>
Arakawa Y.
Yasuda M.
Ohnishi M.
Yoshifuji S.
Chem. Pharm. Bull.
1997,
45:
255
<A NAME="RD15506ST-15A">15a</A>
Ballestri M.
Chatgilialoglu C.
Clark KB.
Griller D.
Giese B.
Kopping B.
J. Org. Chem.
1991,
56:
678
<A NAME="RD15506ST-15B">15b</A> For a recent review, see:
Chatgilialoglu C.
Organosilanes in Radical Chemistry
Wiley;
Chichester:
2004.
<A NAME="RD15506ST-16">16</A>
Typical Procedure for Tandem Deoxygenation-Rearrangement-Electrophile Trapping: Xanthate (+)-3 (250 mg, 0.71 mmol) was dissolved in toluene (20 mL) and then heated to reflux. (Me3Si)3SiH (256 mg, 1.1 mmol), AIBN (58 mg, 0.36 mmol) and methyl acrylate (9.6 µL, 1.1 mmol)
were dissolved in toluene (4 mL) and were added to the refluxing solution via syringe
pump over 100 min. The reaction mixture was allowed to reflux for a further 30 min
before being cooled to r.t. and evaporated under reduced pressure. Column chromatography
[SiO2; gradient elution 5% → 20% Et2O in PE (bp 30-40 °C)] of the residue gave ester (+)-10 as a colourless oil (131 mg, 56%); R
f
(Et2O-PE, 1:4) 0.07; [α]D
25 81.0 (c = 1.00, CHCl3). IR (neat): 2977 (m), 1739 (s), 1695 (s), 1462 (m), 1366 (s), 1260 (m), 1170 (s),
1121 (m), 1100 (m), 1074 (m), 1000 (w), 910 (w), 839 (w), 757 (m) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.05-7.39 (m, 4 H, aromatic CH), 4.86, 4.98 (0.25 H, 0.75 H, rotamers, CH),
3.67 (s, 3 H, OCH3), 2.92-3.04, 2.79-2.92 (m, 0.75 H, 0.25 H, rotamers CH), 2.59-2.44 (m, 2 H, CH2), 2.08-2.30 (overlapping m, 2 H, 2 × CH), 1.79-1.98 (m, 1 H, CH2), 1.71-1.79 (m, 1 H, CH2), 1.35-1.42, 1.26-1.35 [m, 10 H, C(CH3)3, CH]. 13C NMR (100 MHz, CDCl3): δ = 174 (CO), 157 (CO), 146 (quat. aromatic), 144 (quat. aromatic), 127 (aromatic
CH), 126 (aromatic CH), 122, 121 (rotamers, aromatic CH), 120 (aromatic CH), 79.5
[C(CH3)3], 62.7, 61.7 (rotamers, CH), 59.8 (CH), 51.8, 51.5 (rotamers, CH3), 48.2, 47.8 (rotamers, CH), 45.3, 44.8 (rotamers, CH2), 32.5, 31.9 (rotamers, CH2), 30.5, 30.3 (rotamers, CH2), 28.5, 28.3 [rotamers, C(CH3)3]. MS (CI+): m/z (%) = 332 (100) [M + H]+, 276 (43), 232 (77), 214 (12), 200(5), 183 (4), 172 (10), 158 (15), 144 (17), 130
(11), 116 (26). HRMS: m/z calcd for C19H26NO4: 332.1865; found: 332.1866.
<A NAME="RD15506ST-17">17</A>
This is consistent with the observation that increasing the equivalents of the alkene
leads to lower yields of 12.
<A NAME="RD15506ST-18">18</A>
Kopping B.
Chatgilialoglu C.
Zehnder M.
Giese B.
J. Org. Chem.
1992,
57:
3994
<A NAME="RD15506ST-19">19</A> Resolution of alcohol 14 could not be achieved using chiral HPLC or GC, but oxidation with TPAP (
Griffith WP.
Ley SV.
Whitcombe GP.
White A.
J. Chem. Soc., Chem. Commun.
1987,
1625 ) to the corresponding (+)-ketone (79%) allowed determination by chiral HPLC:
Chiralcel OD column (4.6 × 250 mm); flow rate: 0.2 mL/min; eluted with 1% EtOH in
heptane; t
R
(major) = 112 min, t
R (minor, not observed in the enantioenriched product) = 139 min
<A NAME="RD15506ST-20">20</A>
Swenton JS.
Oberdier J.
Rosso PD.
J. Org. Chem.
1974,
39:
1038
<A NAME="RD15506ST-21">21</A>
Determined by chiral GC analysis: Chirasil Dex-CD column; flow rate: 1.0 mL/min; t
R (minor, not observed in the enantioenriched product) = 540 min, t
R(major) = 544 min.
<A NAME="RD15506ST-22">22</A>
Trivedi BK. inventors; Eur. Patent Appl., EP 335375.
; Chem. Abstr. 1990, 112, 178376
<A NAME="RD15506ST-23A">23a</A>
Curran DP.
Synthesis
1988,
417
<A NAME="RD15506ST-23B">23b</A>
Curran DP.
Synthesis
1988,
489