Synlett 2006(17): 2851-2852  
DOI: 10.1055/s-2006-950251
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Phenyliodine(III) Bis(trifluoro-acetate) (PIFA)

Xiao-Yu Han*
College of Chemistry and Chemical Engineering of Suzhou (Soochow) ­University, Suzhou 215123, P. R. of China
e-Mail: 210409036@suda.edu.cn;
Further Information

Publication History

Publication Date:
09 October 2006 (online)

Introduction

Hypervalent iodine(III) reagents are now extensively used in organic synthesis. [1] In particular, phenyliodine(III) bis(trifluoroacetate) (PIFA) has received a lot of attention due to its low toxicity, ready availability, easy handling, and reactivity similar to that of heavy-metal reagents or anodic oxidation. Regarding the oxidation of phenol derivatives with PIFA, in most cases, the reaction proceeds via the intermediate in which the phenolic oxygen reacts with the iodine center of the hypervalent iodine reagent, followed by the nucleophilic attack of the alcohol, [2] ­alkene, [3] amide, [4] carboxylic acid, [5] oxime, [6] fluoride ion, [7] water [8] or electron-rich aromatic ring [9] to give the cross-conjugated cyclohexadienone either via an inter- or an ­intramolecular reaction pathway.

    References

  • 1a Banks DF. Chem. Rev.  1966,  66:  243 
  • 1b Varvoglis A. Chem. Soc. Rev.  1981,  10:  377 
  • 1c Stang PJ. Angew. Chem., Int. Ed. Engl.  1992,  31:  274 
  • 1d Stang PJ. Zhdankin VV. Chem. Rev.  1996,  96:  1123 
  • 2a Tamura Y. Yakura T. Haruta J. Kita Y. J. Org. Chem.  1987,  52:  3927 
  • 2b Mitchell AS. Russell RA. Tetrahedron Lett.  1993,  34:  545 
  • 3 Callinan A. Chen Y. Morrow GW. Swenton JS. Tetrahedron Lett.  1990,  31:  4551 
  • 4 Kita Y. Tohma H. Kikuchi K. Inagaki M. Yakura T. J. Org. Chem.  1991,  56:  435 
  • 5a Wipf P. Kim Y. Fritch PC. J. Org. Chem.  1993,  58:  7195 
  • 5b McKillop A. McLaren L. Taylor RJK. Watson RJ. Lewis N. Synlett  1992,  201 
  • 6a KacËan M. Koyuncu D. McKillop A. J. Chem. Soc., Perkin Trans. 1  1993,  1771 
  • 6b Murakata M. Yamada K. Hoshino O. J. Chem. Soc., Chem. Commun.  1994,  443 
  • 7 Karam O. Jacquesy J.-C. Jouannetaud M.-P. Tetrahedron Lett.  1994,  35:  2541 
  • 8a Tamura Y. Yakura T. Tohma H. Kikuchi K. Kita Y. Synthesis  1989,  126 
  • 8b McKillop A. McLaren L. Taylor RJK. J. Chem. Soc., Perkin Trans. 1  1994,  2047 
  • 9a Swenton JS. Callinan A. Chen Y. Rohde JJ. Kerns ML. Morrow GW. J. Org. Chem.  1996,  61:  1267 
  • 9b Kita Y. Tohma H. Inagaki M. Hatanaka K. Yakura T. J. Am. Chem. Soc.  1992,  114:  2175 
  • 10a Tohma H. Iwata M. Maegawa T. Kita Y. Tetrahedron Lett.  2002,  43:  9241 
  • 10b Mirk D. Willner A. Fröhlich R. Waldvogel SR. Adv. Synth. Catal.  2004,  346:  675 
  • 11 Kita Y. Takada T. Ibaraki M. Gyoten M. Mihara S. Fujita S. Tohma H. J. Org. Chem.  1996,  61:  223 
  • 12 Tohma H. Morioka H. Harayama Y. Hashizume M. Kita Y. Tetrahedron Lett.  2001,  42:  6899 
  • 13 Campbell JA. Broka CA. Gong L. Walker KAM. Wang J.-H. Tetrahedron Lett.  2004,  45:  4073 
  • 14 Dohi T. Morimoto K. Kiyono Y. Tohma H. Kita Y. Org. Lett.  2005,  7:  537 
  • 15 Itoh N. Sakamoto T. Miyazawa E. Kikugawa Y. J. Org. Chem.  2002,  67:  7424