Synthesis 2006(20): 3467-3477  
DOI: 10.1055/s-2006-950223
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Indoles: Efficient Functionalisation of the 7-Position

Nicolas Charrier, Emmanuel Demont*, Rachel Dunsdon, Graham Maile, Alan Naylor, Alistair O’Brien, Sally Redshaw, Pam Theobald, David Vesey, Daryl Walter
Neurology and Gastrointestinal Center of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, CM19 5AW, Essex, UK
Fax: +44(1279)627685; e-Mail: emmanuel.h.demont@gsk.com;
Further Information

Publication History

Received 8 June 2006
Publication Date:
04 September 2006 (online)

Abstract

Traditional strategies in indole chemistry do not allow high-yielding access to some substitution patterns such as 3,5,7-trisubstituted indoles. We report in this article the efficient synthesis of this type of indole. The Heck cyclisation strategy we used allows the synthesis of 7-iodo-, 7-alkoxy-, 7-amino-, and 7-nitroindoles bearing other functionalities at the 3- and 5-positions. We believe that the mild conditions used should allow the preparation of indoles with a wide range of substituents in these two positions as shown by the synthesis of a 5-bromo-7-iodoindole. However, this strategy has some limitations in the case of very electron-deficient indoles such as a 7-nitroindole where the aromatisation of the 7-nitrodihydroindole intermediate is not complete. In this case, Larock’s indole synthesis from disubstituted acetylenes proved to be more appropriate.

    References

  • 1 Saxton JE. The Chemistry of Heterocyclic Compounds   Vol. 25, Part IV:  Wiley; New York: 1983. 
  • 3 Charrier N. Demont E. Dunsdon R. Maile G. Naylor A. O’Brien A. Redshaw S. Theobald P. Vesey D. Walter D. Synlett  2005,  3071 
  • 4a Heath-Brown B. Philpott PG. J. Chem. Soc.  1965,  7185 
  • 4b McKittrick B. Failli A. Steffan RJ. Soll RM. Schmid J. Asselin AA. Shaw CC. Noureldin R. Gavin G. J. Heterocycl. Chem.  1990,  27:  2151 
  • 5 Bartoli G. Palmieri G. Bosco M. Dalpozzo R. Tetrahedron Lett.  1989,  30:  2129 
  • 6a Clark RD. Repke DB. Heterocycles  1984,  22:  195 
  • 6b Moyer MP. Shiurba JF. Rapoport H. J. Org. Chem.  1986,  51:  5106 
  • For a review on the use of transition metals in the synthesis and functionalisation of indoles, see:
  • 7a Hegedus LS. Angew. Chem., Int. Ed. Engl.  1988,  27:  1113 
  • For a recent and very well-documented review on the synthesis of indoles through palladium-catalysed reactions, see:
  • 7b Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 8 Hartung CG. Fecher A. Chapell B. Snieckus V. Org. Lett.  2003,  5:  1899 
  • 9a Somei M. Saida Y. Heterocycles  1985,  23:  3113 
  • 9b Somei M. Yamada F. Hamada H. Kawasaki T. Heterocycles  1989,  29:  643 
  • 10 Iwao M. Heterocycles  1994,  38:  45 
  • 11 This list is not exhaustive. For example, since the completion of this work, a one-pot synthesis of indoles via enamines has been reported, see: Barluenga J. Fernandez MA. Aznar F. Valdes C. Chem. Eur. J.  2005,  11:  2276 ; see also ref. 7b
  • For a very comprehensive overview of the challenges posed by the synthesis of 7-substituted indoles, see:
  • 12a Ezquerra J. Pedregal C. Lamas C. Barluenga J. Perez M. Garcia-Martin MA. Gonzales JM. J. Org. Chem.  1996,  61:  5804 ; and references cited therein
  • 12b Rodriguez AL. Koradin C. Dohle W. Knochel P. Angew. Chem. Int. Ed.   2000,  39:  2488 ; and references cited therein
  • 12c Koradin C. Dohle W. Rodriguez AL. Schmid B. Knochel P. Tetrahedron  2003,  59:  1571 
  • It is possible to functionalise the 3-position in situ, but it needs concomitant substitution at the 2-position:
  • 13a Arcadi A. Cacchi S. Marinelli F. Tetrahedron Lett.  1992,  33:  3915 
  • 13b Arcadi A. Cacchi S. Carcinelli V. Marinelli F. Tetrahedron  1994,  50:  437 
  • 14 Okauchi T. Itonaga M. Minami T. Owa T. Kitoh K. Yoshino H. Org. Lett.  2000,  2:  1485 
  • 15 Iwao M. Motoi O. Fukuda T. Ishibashi F. Tetrahedron  1998,  54:  8999 
  • 16 Heydari A. Mehrdad M. Maleki A. Ahmadi N. Synthesis  2004,  1563 
  • 17a Odle R. Blevins B. Ratcliff M. Hegedus LS. J. Org. Chem.  1980,  45:  2709 
  • 17b Yang S. Chung W. Indian J. Chem., Sect. B  1999,  38:  897 
  • 18a Larock RC. Yum EK. Refvik MD. J. Org. Chem.  1998,  63:  7652 
  • For application to total synthesis, see:
  • 18b Chen C. Lieberman DR. Larsen RD. Reamer RA. Verhoeven TR. Reider PJ. Tetrahedron Lett.  1994,  35:  6981 
  • 18c Liu X. Deschamp JR. Cook JM. Org. Lett.  2002,  4:  3339 
  • 19 Hegedus LS. Allen GF. Bozell JJ. Waterman EL. J. Am. Chem. Soc.  1978,  100:  5800 
  • 20a O’Shea DF. Kerins F. J. Org. Chem.  2002,  67:  4968 
  • 20b Coleman CM. O’Shea DF. J. Am. Chem. Soc.  2003,  125:  4054 
  • 22 Macor JE. Ogilvie RJ. Wythes MJ. Tetrahedron Lett.  1996,  37:  4289 
  • 23a Jeffery T. David M. Tetrahedron Lett.  1998,  39:  5751 
  • 23b Jeffery T. Tetrahedron  1996,  52:  10113 
  • Reviews:
  • 23c De Meijere A. Meyer FE. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 
  • 23d Jeffery T. In Advances in Metal-Organic Chemistry   Vol. 5:  Liebeskind LS. JAI Press; Greenwich CT: 1996.  p.153-260  
  • 24 For a recent synthesis of 7-hydroxy-indole, see: Lerman L. Weinstock-Rosin M. Nudelman A. Synthesis  2004,  3043 
  • 25 Bosch J. Roca T. Armengol M. Fernandez-Forner D. Tetrahedron  2001,  57:  1041 ; see also ref. 22
  • 26 For a review on iodination of aryl compounds, see: Merkushev EB. Synthesis  1988,  923 
  • 27 This side reaction is not observed with 2-nitro aniline: Ragagnin G. Knochel P. Synlett  2004,  951 
  • Bis(pyridine)iodonium(I) tetrafluoroborate is also efficient for high-yielding selective iodination of aniline; see ref. 12a and:
  • 28a Barluenga J. Gonzalez JM. Garcia-Martin MA. Campos PJ. Asensio G. J. Org. Chem.  1993,  58:  2058 
  • 28b Barluenga J. Rodriguez MA. Campos PJ. J. Org. Chem.  1990,  55:  3104 
  • 29 Gardiner JM. Loyns CR. Schwalbe CH. Barrett GC. Lowe PR. Tetrahedron  1995,  51:  4101.  Methyl 4-bromo-1-hydroxy-2-[(E)-prop-1-enyl]-1H-benzimidazole-6-carboxylate(23a) has the following characteristics: white solid; mp 186-188 °C; 1H NMR (400 MHz, DMSO-d 6): δ = 2.02 (dd, J = 7.2, 2.0 Hz, 3 H), 3.89 (s, 3 H), 6.68 (dd, J = 14.0, 2.0 Hz, 1 H), 7.17 (dq, J = 14.0, 7.2 Hz, 1 H), 7.95 (s, 1 H), 8.00 (s, 1 H), 12.70 (br s, 1 H); 13C NMR (100.6 MHz, DMSO-d 6): δ = 18.7, 52.3, 110.2, 111.4, 116.0, 124.1, 125.1, 132.4, 138.6, 139.5, 150.2, 165.3; ESI-MS: m/z = 310.9, 312.9 [M + H+]
  • 31 Hegedus LS. Mulhern TA. Mori A. J. Org. Chem.  1985,  50:  4282 ; See also ref. 17b
  • 32 Sakamoto T. Kondo Y. Uchiyama M. Yamanaka H. J. Chem. Soc., Perkin Trans. 1  1993,  1941 
  • Sulfonamide:
  • 35a Krolski ME. Renaldo AF. Rudisill DE. Stille JK. J. Org. Chem.  1988,  53:  1170 
  • Acetanilide:
  • 35b Kasahara A. Izumi T. Murakami S. Miyamoto K. Hino T. J. Heterocycl. Chem.  1989,  26:  1405 
  • Anilines:
  • 35c Yamaguchi M. Arisawa M. Hirama M. Chem. Commun.  1998,  1399 
  • 35d Adams DR. Duncton MAJ. Roffey JRA. Spencer J. Tetrahedron Lett.  2002,  43:  7581 
  • 36 The synthesis of indoles from 2-halogenated anilines and a (2-alkoxyvinyl)boronic ester, followed by hydrolysis and in situ cyclisation has also been described. However, the synthesis of the (2-alkoxyvinyl)boronic ester requires two steps and we felt this route would not offer significant advantages compared to the others (see below): Satoh M. Miyaura N. Suzuki A. Synthesis  1987,  373 
  • 41 Wheeler L. Am. Chem. J.  1909,  42:  457 
  • 42 Dains V. Vaughan J. J. Am. Chem. Soc.  1918,  40:  932 
  • 43 Borsche W. Stackmann L. Makaroff-Semljanski J. Chem. Ber.  1916,  49:  2230 
2

A search for the indole core in the WDI database retrieved more than 3700 hits. See also ref. 12a.

21

The synthesis of the 7-substituted indoles will be described with ethyl or n-propyl at the 3-position. The synthetic routes described in this paper are applicable to both substituents.

30

An NOE experiment proved that the stereochemistry of the exocyclic double bond is as shown in Scheme [7] .

33

See references 133d and 136a-e cited in ref. 7b.

34

Compounds 28a and 28b are drawn as acids for convenience, but are isolated as trimers. See ref. 20a.

37

The structure of 30 was assigned by an NOE experiment.

38

We ensured that we were able to reproduce Larock’s results on 2-iodoaniline. Under the same conditions, methyl 4-amino-3-iodo-benzoate gave a 94:6 mixture of isomers. Within this set of examples, the selectivity appears related to the electron deficiency of the aromatic ring.

39

We did not attempt to increase the yield of the ring formation by using substituents more stable than trimethylsilyl to the reaction conditions, since the yield obtained was adequate for our purposes.

40

Removal of the trifluoroacetamido group proved easier for 25 (deprotection takes 45 minutes at room temperature) than for 14 (deprotection not complete after two days under similar conditions).