References and Notes
1a
Ware E.
Chem. Rev.
1950,
46:
403
1b
López CA.
Trigo GG.
Adv. Heterocycl. Chem.
1985,
38:
177
1c
Meusel M.
Gütschow M.
Org. Prep. Proced. Int.
2004,
36:
391
2
Nakabayashi M.
Regan MM.
Lifsey D.
Kantoff PW.
Taplin M.-E.
Sartor O.
Oh WK.
Br. J. Urol. Int.
2005,
96:
783
3
Bazil CW.
Curr. Treat. Options Neurol.
2004,
6:
339
4
Nakajima M.
Itoi K.
Takamatsu Y.
Kinoshita T.
Okazaki T.
Kawakubo K.
Shindo M.
Honma T.
Tohjigamori M.
Haneishi T.
J. Antibiot.
1991,
44:
293
5
Burton SG.
Dorrington RA.
Tetrahedron: Asymmetry
2004,
15:
2737
For recent illustrative examples, see:
6a
Zhang D.
Xing XC.
Cuny GD.
J. Org. Chem.
2006,
71:
1750
6b
Ignacio JM.
Macho S.
Marcaccini S.
Pepino R.
Torroba T.
Synlett
2005,
3051
6c
Patel VM.
Desai KR.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2005,
44:
1084
6d
Manku S.
Curran DP.
J. Org. Chem.
2005,
70:
4470
6e
Alsina J.
Scott WL.
O’Donnell MJ.
Tetrahedron Lett.
2005,
46:
3131
6f
Volonterio A.
de Arellano CR.
Zanda M.
J. Org. Chem.
2005,
70:
2161
7a Bergs H. inventors; DRP 566094.
7b
Bucherer HT.
Brandt W.
J. Prakt. Chem.
1934,
140:
129
7c
Bucherer HT.
Steiner W.
J. Prakt. Chem.
1934,
140:
291
7d
Bucherer HT.
Lieb VA.
J. Prakt. Chem.
1934,
141:
5 ; see also ref. 1a
For recent applications, see:
8a
Wermuth UD.
Jenkins ID.
Bott RC.
Byriel KA.
Smith G.
Aust. J. Chem.
2004,
57:
461
8b
Micová J.
Steiner B.
Koós M.
Langer V.
Gyepesová D.
Carbohydr. Res.
2003,
338:
1917
8c
Micová J.
Steiner B.
Koós M.
Langer V.
Gyepesová D.
Synlett
2002,
1715
A similar approach has been used to improve and extend other multicomponent reactions, see:
9a
Simoneau CA.
Ganem B.
Tetrahedron
2005,
61:
11374
9b
Simoneau CA.
George EA.
Ganem B.
Tetrahedron Lett.
2006,
47:
1205
10
Weiberth FJ.
Hall SS.
J. Org. Chem.
1987,
52:
3901 ; and references cited therein
11
Wakefield BJ.
The Chemistry of Organolithium Compounds
Pergamon;
Oxford:
1974.
12 Lower conversion was observed when the quantities of KCN and (NH4)2CO3 were reduced.
13
Experimental Method (Using RLi).
In a flame dried ACE thick-walled pressure tube under nitrogen, are successively added THF (1 mL) and the organolithium reagent (1.2 mmol). The solution is cooled to 0 °C whereupon the nitrile (1.0 mmol) is added. The reaction mixture is stirred for 30 min at 0 °C then carefully quenched with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 6 mmol), KCN (197 mg, 3 mmol; CAUTION) and H2O (4 mL) are successively added and the tube is sealed. The hetero-geneous solution is heated at 75 °C (preheated bath) for 24 h then allowed to cool to r.t. The mixture is poured into H2O (50 mL) and extracted with EtOAc (2 × 25 mL). The combined organic extract is washed with brine (25 mL), dried over MgSO4 and evaporated to dryness. The resulting solid is washed with n-pentane (2 × 10 mL) and dried under high vacuum to yield the hydantoin in a high state of purity as judged by NMR analysis and microanalytical data.
14
Selected Data.
Compound 5f: mp 228-229 °C. IR (neat): 3169, 2961, 1750, 1717, 1430, 1370, 1108, 764 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.92 (s, 9 H), 1.24 (s, 3 H), 7.95 (s, 1 H), 10.50 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 18.8, 24.5, 36.1, 66.8, 156.7, 178.2. MS (ES): m/z = 169 [M - H]-. HRMS (EI): m/z calcd for C8H12N2O2: 171.1134; found: 171.1128. Anal. Calcd for C8H14N2O2 (%): C, 56.45; H, 8.29; N, 16.46. Found: C, 56.52; H, 8.35; N, 16.35.
Compound 5h: mp 181-182 °C. IR (neat): 3180, 3052, 2927, 1774, 1709, 1432, 1232, 813, 756 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.89 (t, J = 7.0 Hz, 3 H), 1.09-1.20 (m, 1 H), 1.24-1.41 (m, 3 H), 2.00-2.09 (m, 2 H), 7.21 (dt, J = 1.0, 7.0 Hz, 1 H), 7.23 (d, J = 7.5 Hz, 1 H), 7.38-7.45 (m, 1 H), 7.53 (dt, J = 1.5, 8.2 Hz, 1 H), 8.31 (s, 1 H), 10.87 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 13.9, 22.0, 24.8, 34.7, 64.9, 116.3 (d, J = 22 Hz), 124.4 (d, J = 3 Hz), 126.3 (d, J = 11 Hz), 128.1 (d, J = 3 Hz), 130.4 (d, J = 9 Hz), 156.7, 160.4 (d, J = 247 Hz), 176.1. MS (ES): m/z = 249 [M - H]-. HRMS (EI): m/z calcd for C13H15FN2O2: 250.1118; found: 250.1114. Anal. Calcd for C13H15FN2O2 (%): C, 62.39; H, 6.04; N, 11.19. Found: C, 62.50; H, 6.11; N, 11.01.
Compound 5j: mp 244-245 °C. IR (neat): 3304, 3191, 1775, 1759, 1728, 1710, 1411, 1023, 747, 693 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 2.88 (s, 6 H), 6.70 (d, J = 8.8 Hz, 2 H), 7.11 (d, J = 8.8 Hz, 2 H), 7.29-7.40 (m, 5 H), 9.12 (s, 1 H), 10.9 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 40.0, 69.8, 111.9, 126.6, 127.1, 127.2, 127.7, 128.3, 140.4, 149.8, 156.0, 175.4. MS (ES): m/z = 294 [M - H]-. HRMS (EI): m/z calcd for C17H17N3O2: 295.1321; found: 295.1317. Anal. Calcd for C17H17N3O2 (%): C, 69.14; H, 5.80; N, 14.23. Found: C, 68.80; H, 5.88; N, 13.96.
Compound 5m: mp 199 °C (decomp.). IR (neat): 3227, 2958, 1767, 1736, 1713, 1396, 1232, 1006, 763, 710 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 1.14-1.32 (m, 2 H), 1.44-1.66 (m, 6 H), 2.63-2.73 (m, 1 H), 7.02 (dd, J = 3.8, 5.0 Hz, 1 H), 7.09 (dd, J = 1.3, 3.8 Hz, 1 H), 7.48 (dd, J = 1.3, 5.0 Hz, 1 H), 8.83 (s, 1 H), 10.83 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 25.0, 25.4, 26.2, 26.8, 46.6, 68.5, 124.5, 125.8, 127.0, 143.1, 156.9, 175.1. MS (ES): m/z = 249 [M - H]-. HRMS (EI): m/z calcd for C12H14N2O2S: 250.0776; found: 250.0767. Anal. Calcd for C12H14N2O2S (%): C, 57.58; H, 5.64; N, 11.19. Found: C, 57.91; H, 5.80; N, 11.04.
Compound 5q: mp 244-245 °C. IR (neat): 3250, 3042, 1760, 1712, 1598, 1450, 1255, 758 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.92 (s, 9 H), 3.74 (s, 3 H), 6.88-6.92 (m, 1 H), 7.22-7.30 (m, 3 H), 8.91 (s, 1 H), 10.80 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 24.8, 37.8, 55.1, 71.9, 112.5, 113.8, 119.6, 128.3, 137.6, 156.3, 158.4, 175.3. MS (ES): m/z = 261 [M - H]-. HRMS (EI): m/z calcd for C14H19N2O3: 263.1396; found: 263.1384. Anal. Calcd for C14H18N2O3 (%): C, 64.10; H, 6.92; N, 10.68. Found: C, 64.00; H, 6.95; N, 10.59.
15
Experimental Method (Using RMgX).
In a flame-dried ACE pressure tube under nitrogen, are successively added copper iodide (9.5 mg, 0.05 mmol), THF (1 mL) and the organomagnesium reagent (1.2 mmol) immediately followed by the nitrile [1 mmol; either as liquid or in THF (1 mL) if solid]. The vessel is quickly heated to 70 °C (preheated bath) and maintained at this temperature for 24 h. Upon cooling to r.t., the reaction is carefully quenched with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 6 mmol), KCN (197 mg, 3 mmol; CAUTION) and H2O (4 mL) are successively added and the tube is sealed. The heterogeneous solution is heated at 75 °C (preheated bath) for 24 h then allowed to cool to r.t. The hydantoin is isolated using the same work-up and crystallisation protocol described in ref. 12.
16 Shipman M, and Montagne C. inventors; GB 0603239.5.