Synlett 2006(14): 2284-2286  
DOI: 10.1055/s-2006-949636
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Highly Efficient Approach for the Synthesis of Cationic Lipid DOSPA

Yanhong Lia, Robert J. Debsb, Timothy D. Heath*b
a School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin, 53705-2221, USA
b California Pacific Medical Center Research Institute, 475 Brannan St, Suite 220, San Francisco, CA 94107, USA
Fax: +1(608)2625345; e-Mail: tdheath@pharmacy.wisc.edu;
Further Information

Publication History

Received 23 February 2006
Publication Date:
24 August 2006 (online)

Abstract

A highly efficient strategy has been developed for the synthesis of the cationic lipid, N-[2-({2,5-bis[(3-aminopropyl)amino]-1-oxopentyl}amino)ethyl]-N,N-dimethyl-2,3-bis[(1-oxo-9-octadecenyl)oxy] salt with hydrogen chloride (DOSPA). It involves the linkage of a cationic head group and a hydrophobic moiety in the presence of the standard coupling reagents.

    References and Notes

  • 1 Finkelstein R. Baughman RW. Steele FR. Mol. Ther.  2001,  3:  3 
  • 2 Kayser O. Kiderlen AF. Pharm. Biotechnol.  2004,  249 
  • 3 Ozawa K. Uirusu  2004,  54:  49 
  • 4 McGarrity GJ. Animal Cell Culture Techniques   Clynes M. Springer; Berlin: 1998.  p.600-612  
  • 5 Amalfitano A. Parks RJ. Curr. Gene Ther.  2002,  2:  111 
  • 6 Hauser H. Spitzer D. Verhoeyen E. Unsinger J. Wirth D. Cells Tissues Organs  2000,  167:  75 
  • 7 Suzuki M. Matsuse T. Isigatsubo Y. Curr. Mol. Med.  2001,  1:  67 
  • 8 Friedmann T. Sci. Am.  1997,  276:  96 
  • 9 Parker AL. J. Drug Targeting  2005,  13:  39 
  • 10 Miller AD. Medical and Biotechnology Applications, In Microspheres, Microcapsules & Liposomes   Vol. 2:  Citus Books; London: 1999.  p.545 
  • 11 Bennett MJ. Aberle AM. Balasubramanian JG. Malone JG. Nantz MH. Malone RW. J. Liposome Res.  1996,  6:  545 
  • 12 Felgner PL. Tsai YJ. Felgner JH. Handbook of Nonmedical Applications of Liposomes   Vol. 4:  CRC Press; Boca Raton: 1996.  p.43-56  
  • 13 Zabner J. Adv. Drug Deliv. Rev.  1997,  27:  17 
  • 14 Miller AD. Angew. Chem. Int. Ed.  1998,  37:  1769 
  • 15 Felgner PL. Gadek TR. Holm M. Roman R. Chan HW. Wenz M. Northrop JP. Ringold GM. Danielsen M. Proc. Natl. Acad. Sci. U.S.A.  1987,  84:  7413 
  • 16 Remy JS. Sirlin C. Vierling P. Behr JP. Bioconjugate Chem.  1994,  5:  647 
17

Selected Data for Compound 4.
1H NMR (400 MHz, CDCl3): δ = 5.43 (m, 4 H CHCH), 4.11-3.89 (m, 7 H, OCH, OCH2), 3.59 (s, 6 H, 2 CH3), 3.51 (m, 6 H, NCH2CHO, NCH2), 2.00 (m, 8 H, CH2CHCH), 1.46-1.20 (m, 48 H, CH2), 0.93 (t, 6 H, J = 5.2 Hz, CH3). 13C NMR (100 MHz, CDCl3): δ = 130.9, 129.7 (CHCH), 74.6 (CHO), 72.1, 69.5, 68.2 (CH2O), 65.8, 62.4 (CH2NCH2), 53.9, 53.5 (CH3), 43.1 (CH2NCO), 32.8-22.8 (CH2CH2), 14.3 (CH3). MALDI-MS: m/z = 664.6765 [M + H+].
Selected Data for Compound 10.
1H NMR (400 MHz, CD3OD): δ = 5.38 (m, 4 H, CHCH), 3.92-3.02 (m, 30 H, CHCONH, NCH3, CH2O, CHO, CH2N), 2.06-1.20 (m, 70 H, CH2, CH3, CH2CH2NH2, CH2CH2NH, CH2CHCO). 13C NMR (100 MHz, CDCl3): δ = 155.2 (CO), 130.1, 129.9 (CHCH), 80.6, 79.8, 78.9, 78.5 [C(CH3)3], 72.9 (CHO), 72.8, 71.2 (CH2NCH2), 68.7, 68.0 (OCH2), 60.9 (NCHCONH), 53.9, 52.8 (NCH3), 52.1 (CONHCH2CH2), 47.8-38.2 (CH2NCO), 32.1-22.1 (CH2CH2, CH2CH2NHCO, CH2CHCO), 14.3 (CH3). MALDI-MS: m/z = 1072.1552 [M + H+].