Synlett 2006(13): 2156-2157  
DOI: 10.1055/s-2006-948185
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Cyanuric Chloride: Trichloro-1,3,5-triazine

Kishan P. Haval*
Division of Organic Chemistry (Synthesis), National Chemical ­Laboratory, Pune 411 008, Maharashtra, India
e-Mail: kp.haval@ncl.res.in;
Further Information

Publication History

Publication Date:
09 August 2006 (online)

Introduction

Trichloro-1,3,5-triazine (cyanuric chloride) has been known since 1827. It has occupied an important place in organic synthesis because of its easy availability, low cost and clean selective reactions. It is commercially available and can also be conveniently synthesized by trimerization of cyanogen chloride. [1] The reactivity of ­cyanuric chloride with amines, alcohols, thiols and ­phenols has been widely put to use [2] in the synthesis of dyes, herbicides, insecticides, fungicides, pesticides, drugs and in the preparation of immobilized enzymes, a new class of polypode ligands and chiral stationary phases for GLC and HPLC. It has also been used for the synthesis of N-protected chiral α -aminonitriles, [3] as a mild reducing agent for carboxylic acids to alcohols, [4] in the synthesis of 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), [5] dendrimers, [6] macro­cyclic scaffolds, [7] as a mild and efficient alternative to the classical Swern oxidation, [8] in the preparation of acyl azides, [9] acyl chlorides [10] and chiral monochloro-s-triazine reagents for liquid chromatographic separation of amino acid enantiomers. [11] 2,4,6-Trisubstituted triazines have been used as antimalarial and antibacterial agents. [12] Recently, cyanuric chloride has been used for the synthesis of cyanuric acid bridged porphyrin-porphyrin dyads, [13] calixarenes [14] and benzoxazinones. [15]

    References

  • 1 Kaminski ZJ. Peptide Science  2000,  55:  140 
  • 2 Menicagli R. Malanga C. Peluso P. Synth. Commun.  1994,  24:  2153 
  • 3 Maetz P. Rodriguez M. Tetrahedron Lett.  1997,  38:  4221 
  • 4 Falorni M. Porcheddu A. Taddei M. Tetrahedron Lett.  1999,  40:  4395 
  • 5 Falchi A. Giacomelli G. Porcheddu A. Taddei M. Synlett  2000,  275 
  • 6a Zhang W. Simanek EE. Org. Lett.  2000,  2:  843 
  • 6b Steffensen MB. Simanek EE. Org. Lett.  2003,  5:  2359 
  • 7 Löwik DWPM. Lowe CR. Eur. J. Org. Chem.  2001,  2825 
  • 8 De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem.  2001,  66:  7909 
  • 9 Bandgar BP. Pandit SS. Tetrahedron Lett.  2002,  43:  3413 
  • 10 Luo G. Xu L. Poindexter GS. Tetrahedron Lett.  2002,  43:  8909 
  • 11 Brückner H. Wachsmann M. J. Chromatogr. A  2003,  998:  73 
  • 12a Agarwal A. Srivastava K. Puri SK. Chauhan PMS. Bioorg. Med. Chem. Lett.  2005,  15:  531 
  • 12b Srinivas K. Srinivas U. Rao VJ. Bhanuprakash K. Kishore KH. Murty USN. Bioorg. Med. Chem. Lett.  2005,  15:  1121 
  • 13 Carofiglio T. Varotto A. Tonellato U. J. Org. Chem.  2004,  69:  8121 
  • 14 Wang M.-X. Yang H.-B. J. Am. Chem. Soc.  2004,  126:  15412 
  • 15 Khajavi MS. Shariat SM. Heterocycles  2005,  65:  1159 
  • 16 Forbes DC. Barrett EJ. Lewis DL. Smith MC. Tetrahedron Lett.  2000,  41:  9943 
  • 17 De Luca L. Giacomelli G. Taddei M. J. Org. Chem.  2001,  66:  2534 
  • 18 Furuya Y. Ishihara K. Yamamoto H. J. Am. Chem. Soc.  2005,  127:  11240 
  • 19 De Luca L. Giacomelli G. Porcheddu A. Org. Lett.  2002,  4:  553 
  • 20 De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem.  2002,  67:  5152 
  • 21 Haval KP. Mhaske SB. Argade NP. Tetrahedron  2006,  62:  937 
  • 22 Haval KP. Argade NP. Tetrahedron  2006,  62:  3557