Synlett 2006(9): 1369-1373  
DOI: 10.1055/s-2006-939715
LETTER
© Georg Thieme Verlag Stuttgart · New York

Efficient Microwave-Assisted Synthesis of Tetrahydroindazoles and their Oxidation to Indazoles

Vera L. M. Silva, Artur M. S. Silva*, Diana C. G. A. Pinto, José A. S. Cavaleiro
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: arturs@dq.ua.pt;
Further Information

Publication History

Received 10 February 2006
Publication Date:
22 May 2006 (online)

Abstract

N-Acetyl-styrylpyrazoles undergo Diels-Alder cyclo­addition reactions with N-methylmaleimide under solvent-free conditions to give the corresponding tetrahydroindazoles in good yields and high selectivity. On heating, these reactions do not occur or ­afford only traces of the cycloadducts. The stereochemistry of ­obtained cycloadducts was assigned by NMR. Oxidation of the ­tetrahydroindazoles with DDQ gave the expected indazoles and was accompanied by N-deacylation.

    References and Notes

  • 1a Elguero J. Pyrazoles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry   Vol. 5:  Potts KT. Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  p.167-303  
  • 1b Elguero J. Pyrazoles, In Comprehensive Heterocyclic Chemistry II   Vol. 3:  Shinkai I. Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  p.1-75  
  • 2 O’Neil MJ. Smith A. The 13th Merck Index   Merck Research Laboratories Division of Merck & Co. Inc.; Whitehouse Station, New York: 2001. 
  • 3a Bistocchi GA. De Meo G. Pedini M. Ricci A. Brouilhet H. Bucherie S. Rabaud M. Jacquignon P. Farmaco Ed. Sci.  1981,  36:  315 
  • 3b Picciola G. Ravenna F. Carenini G. Gentili P. Riva M. Farmaco Ed. Sci.  1981,  36:  1037 
  • 3c Mosti L. Sansebastiano L. Fossa P. Schenone P. Mattioli F. Il Farmaco  1992,  47:  357 
  • 3d Gordon DW. Synlett  1998,  1065 
  • 3e Schindler R. Hoefgen N. Heinecke K. Poppe H. Szelenyi I. Pharmazie  2000,  55:  857 
  • 4a Lóránd T. Kocsis B. Emôdy L. Sohár P. Eur. J. Med. Chem.  1999,  1009 
  • 4b Stefańska JZ. Gralewska R. Starościak BJ. Kazimierczuk Z. Pharmazie  1999,  54:  879 
  • 5a Sun J.-H. Teleha CA. Yan J.-S. Rodgers JD. Nugiel DA. J. Org. Chem.  1997,  62:  5627 
  • 5b Rodgers JD. Jonhson BL. Wang H. Greenberg RA. Erickson-Viitanen S. Klabe RM. Cordova BC. Rayner MM. Lam GN. Chang C.-H. Bioorg. Med. Chem. Lett.  1996,  6:  2919 
  • 6 Keppler BK. Hartmann M. Met.-Based Drugs  1994,  1:  145 
  • 7a Bland-Ward PA. Moore PK. Life Sci.  1995,  57:  131 
  • 7b Mamiya T. Noda Y. Noda A. Hiramatsu M. Karasawa K. Kameyama T. Furukawa S. Yamada K. Nabeshima T. Neuropharmacology  2000,  39:  2391 
  • 7c Schumann P. Collot V. Hommet Y. Gsell W. Dauphin F. Sopkova J. MacKenzie ET. Duval D. Boulouard M. Rault S. Bioorg. Med. Chem. Lett.  2001,  11:  1153 
  • 8 Raman CS. Li H. Martásek P. Southan G. Masters BSS. Poulos TL. Biochemistry  2001,  40:  13448 
  • 9 Connolly PJ. Wetter SK. Beers KN. Hamel SC. Haynes-Johnson D. Kiddoe M. Kraft P. Lai MT. Campen C. Palmer S. Phillips A. Bioorg. Med. Chem. Lett.  1997,  7:  2551 
  • 10 Mosti L. Menozzi G. Fossa P. Schenone P. Lampa E. Parrillo C. Damico M. Rossi F. Il Farmaco  1992,  47:  567 
  • 11a Behr LC. Fusco R. Jarboe CH. Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings   Wiley RH. Interscience Publishers; New York: 1967. 
  • 11b Baiocchi L. Corsi G. Palazzo G. Synthesis  1978,  633 
  • 12a Medio-Simón M. Laviada MJA. Sepúlveda-Arques J. J. Chem. Soc., Perkin Trans. 1  1990,  2749 
  • 12b Sepúlveda-Arques J. Abarca-González B. Medio-Simón M. Adv. Heterocycl. Chem.  1995,  63:  339 
  • 13 Matsugo S. Takamizawa A. Synthesis  1983,  852 
  • 14 Tomé AC. Cavaleiro JAS. Storr RC. Synlett  1996,  531 
  • 15a Pinto DCGA. Silva AMS. Cavaleiro JAS. Heterocycl. Commun.  1997,  3:  433 
  • 15b Pinto DCGA. Silva AMS. Cavaleiro JAS. Foces-Foces C. Llamas-Sainz AL. Jagerovic N. Elguero J. Tetrahedron  1999,  55:  10187 
  • 15c Pinto DCGA. Silva AMS. Lévai A. Cavaleiro JAS. Patonay T. Elguero J. Eur. J. Org. Chem.  2000,  2593 
  • 15d Pinto DCGA. Silva AMS. Cavaleiro JAS. J. Heterocycl. Chem.  2000,  37:  1629 
  • 15e Lévai A. Patonay T. Silva AMS. Pinto DCGA. Cavaleiro JAS. J. Heterocycl. Chem.  2002,  39:  751 
  • 15f Silva VLM. Silva AMS. Pinto DCGA. Cavaleiro JAS. Elguero J. Eur. J. Org. Chem.  2004,  4348 
  • 18a Pinto DCGA. Silva AMS. Almeida LMPM. Carrillo JR. Díaz-Ortiz A. de la Hoz A. Cavaleiro JAS. Synlett  2003,  1415 
  • 18b Pinto DCGA. Silva AMS. Brito CM. Sandulache A. Carrillo JR. Prieto P. Díaz-Ortiz A. de la Hoz A. Cavaleiro JAS. Eur. J. Org. Chem.  2005,  2973 
  • 20 Silva AMS. Pinto DCGA. Cavaleiro JAS. Lévai A. Patonay T. Arkivoc  2004,  (vii):  106 
  • 28 Lévai A. Silva AMS. Pinto DCGA. Cavaleiro JAS. Alkorta I. Elguero J. Jekö J. Eur. J. Org. Chem.  2004,  4672 
16

Physical Data of ( E )-1-(1-Methyl-2,5-dioxo-3-pyrrol-idinyl)-5-styryl-3-(2-hydroxyphenyl)pyrazole ( 1d).
Mp 234-236 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.13 (s, 3 H, NCH 3), 3.30 (dd, 1 H, J = 18.3, 9.1 Hz, 4′′′-CH 2), 3.45 (dd, 1 H, J = 18.3, 5.2 Hz, 4′′′-CH 2), 5.46 (dd, 1 H, J = 9.1, 5.2 Hz, 3′′′-CH), 6.90 (s, 1 H, H-4), 6.96 (ddd, 1 H, J = 7.7, 7.3, 1.2 Hz, H-5′), 7.00 (dd, 1 H, J = 8.4, 1.2 Hz, H-3′), 7.01 (d, 1 H, J = 15.8 Hz, H-α), 7.22-7.27 (m, 1 H, H-4′), 7.26 (d, 1 H, J = 15.8 Hz, H-β), 7.35-7.44 (m, 3 H, H-3′′,5′′,4′′), 7.53 (dd, 2 H, J = 8.1, 1.5 Hz, H-2′′,6′′), 7.59 (dd, 1 H, J = 7.7, 1.7 Hz, H-6′), 10.03 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 25.5 (NCH 3), 34.8 (4′′′-CH2), 55.6 (3′′′-CH), 100.8 (C-4), 112.6 (C-α), 115.8 (C-1′), 117.1 (C-3′), 119.5 (C-5′), 126.6 (C-6′), 126.9 (C-2′′,6′′), 128.9 (C-3′′,5′′), 129.1 (C-4′′), 129.9 (C-4′), 135.6 (C-1′′), 136.1 (C-β), 143.9 (C-5), 152.5 (C-3), 155.7 (C-2′), 173.3 (2′′′-C=O), 172.5 (5′′′-C=O). MS (EI): m/z (rel. int.) = 374 (30), 373 (100) [M+ ], 372 (25), 262 (39), 261 (67), 231 (11), 202 (10), 155 (5), 128 (6), 115 (16), 91 (29), 77 (9), 65 (9).

17

Physical Data of ( E )-3-(2-Hydroxyphenyl)-1-methyl-5-styrylpyrazole ( 1b).
Mp 159-161 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.92 (s, 3 H, 1-CH3), 6.81 (s, 1 H, H-4), 6.89 (ddd, 1 H, J = 7.9, 7.3, 1.1 Hz, H-5′), 6.91 (d, 1 H, J = 16.2 Hz, H-α), 7.02 (dd, 1 H, J = 8.0, 1.1 Hz, H-3′), 7.13 (d, 1 H, J = 16.2 Hz, H-β), 7.21 (ddd, 1 H, J = 8.0, 7.3, 1.6 Hz, H-4′), 7.32 (dd, 2 H, J = 7.6, 6.8 Hz, H-3′′,5′′), 7.39 (tt, 1 H, J = 7.6, 1.6 Hz, H-4′′), 7.51 (dd, 2 H, J = 6.8, 1.6 Hz, H-2′′,6′′), 7.57 (dd, 1 H, J = 7.9, 1.6 Hz, H-6′), 10.82 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 36.6 (1-CH3), 98.9 (C-4), 113.7 (C-α), 116.5 (C-1′), 117.0 (C-3′), 119.2 (C-5′), 126.1 (C-6′), 126.7 (C-2′′,6′′), 128.6 (C-4′′), 128.8 (C-3′′,5′′), 129.0 (C-4′), 133.5 (C-β), 136.0 (C-1′′), 141.8 (C-5), 150.2 (C-3), 155.8 (C-2′). MS (EI): m/z (rel. int.) = 276 (100) [M+• ], 275 (20), 231 (5), 202 (7), 185 (10), 144 (14), 128 (10), 115 (20), 102 (8), 91 (11), 77 (15). Anal. Calcd for C18H16N2O: C, 78.24; H, 5.84; N, 10.14. Found:C, 77.84; H, 5.79; N, 10.02.

19

Typical Experimental Procedure.
Acetyl chloride (1 mol equiv) was added to a stirred solution of (E)-3-(2-hydroxyphenyl)-5-styrylpyrazole (1a) in dry pyridine. The mixture was stirred at r.t. and under nitrogen atmosphere until complete disappearance of the starting 5-styrylpyrazole 1a. After that period the reaction mixture was poured over ice and H2O, and acidified at pH 2 with a 10% solution of HCl. The resulting mixture was extracted with CHCl3 and dried over anhyd Na2SO4. The solvent was evaporated to dryness and the residue purified by thin layer chromatography with CH2Cl2 as eluent giving the expected (E)-1-acetyl-3-(2-hydroxyphenyl)-5-styrylpyrazole (1c) in moderate yield (44%). Mp 124.4-126.2 °C. 1H NMR (300.13 MHz, CDCl3): δ = 2.77 (s, 3 H, 1-COCH 3), 6.98 (ddd, 1 H, J = 7.7, 7.5, 1.1 Hz, H-5′), 7.06 (s, 1 H, H-4), 7.07 (dd, 1 H, J = 8.3, 1.1 Hz, H-3′), 7.22 (d, 1 H, J = 16.5 Hz, H-β), 7.30-7.43 (m, 4 H, H-4′,3′′,4′′,5′′), 7.57 (d, 2 H, J = 7.7 Hz, H-2′′,6′′), 7.63 (dd, 1 H, J = 7.7, 1.6 Hz, H-6′), 7.93 (d, 1 H, J = 16.5 Hz, H-α), 10.38 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 24.0 (1-COCH3), 104.0 (C-4), 114.8 (C-1′), 116.4 (C-α), 117.3 (C-3′), 119.6 (C-5′), 127.2 (C-2′′,6′′), 127.4 (C-6′), 128.8 (C-3′′,5′′), 129.0 (C-4′′), 131.0 (C-4′), 135.6 (C-β), 136.0 (C-1′′), 145.8 (C-5), 153.9 (C-3), 156.5 (C-2′), 170.8 (1-COCH3). MS (EI): m/z (rel. int.) = 304 (80) [M+•], 262 (73) [M - C2H2O]+, 245 (5), 233 (5), 216 (4), 202 (6) [M - C8H6]+, 191 (2), 185 (21) [M - C7H5NO]+, 178 (4), 171 (100), 155 (3), 140 (4), 128 (5), 115 (23), 102 (6), 89 (5), 77 (8) [C6H5 +], 65 (4). Anal. Calcd for C19H16N2O2: C, 74.98; H, 5.30; N, 9.20. Found: C, 75.01; H, 5.26; N, 9.05.

21

Physical Data of ( E )-1-Acetyl-4-(4-chlorostyryl)-3-(2-hydroxyphenyl)pyrazole ( 5b).
Mp 169.1-169.9 °C. 1H NMR (300.13 MHz, CDCl3): δ = 2.76 (s, 3 H, 1-COCH 3), 6.94 (AB, 1 H, J = 16.1 Hz, H-β), 6.99 (dd, 1 H, J = 7.5, 6.9 Hz, H-5′), 7.04 (AB, 1 H, J = 16.1 Hz, H-α), 7.12 (dd, 1 H, J = 8.3, 1.1 Hz, H-3′), 7.33-7.36 (m, 1 H, H-4′), 7.36 (d, 2 H, J = 8.6 Hz, H-3′′5′′), 7.42 (d, 2 H, J = 8.6 Hz, H-2′′,6′′), 7.62 (dd, 1 H, J = 7.5, 1.6 Hz, H-6′), 8.47 (dd, 1 H, J = 0.7 Hz, H-5), 9.82 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 21.6 (1-COCH3), 115.9 (C-1′), 117.4 (C-3′), 117.9 (C-α), 119.8 (C-5′), 122.9 (C-4), 126.2 (C-5), 127.8 (C-2′′,6′′), 128.9 (C-6′), 129.0 (C-3′′,5′′), 130.9 (C-4′), 131.3 (C-β), 133.9 (C-4′′), 135.0 (C-1′′), 152.4 (C-3), 156.0 (C-2′), 168.1 (1-COCH3). MS (EI): m/z (rel. int.) = 340 (36) [M+• , 37Cl], 338 (81) [M+• , 35Cl], 298 (35), 296 (81), 281 (5), 267 (4), 260 (8), 242 (4), 231 (6), 202 (8), 185 (20), 171 (100), 149 (5), 115 (14), 102 (6), 77 (4). Anal. Calcd for C19H15ClN2O2: C, 67.36; H, 4.46; N, 8.27. Found: C, 67.48; H, 4.73; N, 8.30.

22

Physical Data of ( Z )-1-Acetyl-4-(4-chlorostyryl)-3-(2-hydroxyphenyl)pyrazole ( 6b).
Mp 141.8-143.6 °C. 1H NMR (300.13 MHz, CDCl3): δ = 2.72 (s, 3 H, 1-COCH 3), 6.50 (dd, 1 H, J = 11.9, 1.1Hz, H-α), 6.75 (d, 1 H, J = 11.9 Hz, H-β), 6.95 (ddd, 1 H, J = 7.2, 7.9, 1.2 Hz, H-5′), 7.09 (dd, 1 H, J = 8.3, 1.2 Hz, H-3′), 7.17-7.23 (m, 4 H, H-2′′,3′′,5′′,6′′), 7.33 (ddd, 1 H, J = 7.2, 8.3, 1.6 Hz, H-4′), 7.87 (dd, 1 H, J = 7.9, 1.6 Hz, H-6′), 8.00 (d, 1 H, J = 1.1 Hz, H-5), 10.23 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 21.6 (1-COCH3), 115.7 (C-1′), 117.3 (C-3′), 119.6 (C-5′), 119.9 (C-α), 120.0 (C-4), 127.6 (C-5), 128.5 (C-6′), 128.7 (C-2′′,6′′), 129.8 (C-3′′,5′′), 131.0 (C-4′), 132.4 (C-β), 133.5 (C-4′′), 134.4 (C-1′′), 153.1 (C-3), 156.3 (C-2′), 167.8 (C=O). MS (EI): m/z (rel. int.) = 340 (31) [M+• , 37Cl], 338 (69) [M+• , 35Cl], 298 (32), 296 (71), 281 (5), 260 (8), 231 (7), 202 (8), 185 (22), 171 (100), 149 (6), 115 (17), 102 (8), 89 (5), 77 (7). Anal. Calcd for C19H15ClN2O2: C, 67.36; H, 4.46; N, 8.27. Found: C, 67.15; H, 4.37; N, 7.98.

23

Optimised Experimental Procedure.
A mixture of (E or Z)-1-acetyl-3-(2-hydroxyphenyl)-4-styrylpyrazoles 5a-d or 6a-c and N-methylmaleimide (1:6 mole ratio) was irradiated at atmospheric pressure in an Ethos SYNTH microwave (Milestone Inc.), at 800 W for 40 min. The crude product was dissolved in CHCl3 and purified by thin layer chromatography with a 8:2 mixture of CHCl3-EtOAc as eluent. The residue was crystallised from EtOH to give the expected 1-acetyl-3-(2-hydroxyphenyl)-7-methyl-5-phenyl-6,8-dioxopyrrolo[3,4-g]-5,5a,8a,8b-tetrahydro-indazoles (7a, 88%; 7b, 68%; 7c, 95%; 7d, 95%; 8a, 32%; 8b, 54%; 8c, 54%).

24

Physical Data of 1-Acetyl-5-(4-ethoxyphenyl)-3-(2-hydroxyphenyl)-7-methyl-6,8-dioxopyrrolo[3,4- g ]-5,5a,8a,8b-tetrahydroindazole ( 7c).
Mp 236-237 °C. 1H NMR (300.13 MHz, CDCl3): δ = 1.44 (t, 3 H, J = 7.0 Hz, 4′′-OCH2CH 3), 2.54 (s, 3 H, 1-COCH 3), 2.76 (s, 3 H, 7-CH 3), 3.37 (dd, 1 H, J = 8.5, 7.4 Hz, H-5a), 3.54 (br dd, 1 H, J = 7.4, 4.5 Hz, H-5), 4.07 (dq, 2 H, J = 7.0, 1.9 Hz, 4′′-OCH 2CH3), 4.46 (dd, 1 H, J = 8.5, 7.1 Hz, H-8a), 4.97 (br dd, 1 H, J = 7.1, 3.6 Hz, H-8b), 6.94 (dd, 1 H, J = 4.5, 3.6 Hz, H-4), 6.96 (d, 2 H, J = 8.6 Hz, H-3′′,5′′), 6.97 (ddd, 1 H, J = 8.6, 7.2, 0.9 Hz, H-5′), 7.10 (dd, 1 H, J = 8.0, 0.9 Hz, H-3′), 7.21 (d, 2 H, J = 8.6 Hz, H-2′′,6′′), 7.38 (ddd, 1 H, J = 8.0, 7.2, 1.4 Hz, H-4′), 7.66 (dd, 1 H, J = 8.6, 1.4 Hz, H-6′), 9.85 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 14.9 (4′′-OCH2 CH3), 21.5 (1-COCH3), 25.0 (7-CH3), 40.6 (C-8a), 42.1 (C-5a), 44.5 (C-5), 57.5 (C-8b), 63.5 (4′′-OCH2CH3), 114.4 (C-1′), 114.5 (C-3′′,5′′), 117.7 (C-3′), 119.7 (C-5′), 126.2 (C-4), 127.5 (C-6′;), 129.0 (C-1′′), 129.8 (C-2′′,6′′), 131.9 (C-4′), 137.8 (C-3a), 149.3 (C-3), 157.1 (C-2′), 158.5 (C-4′′), 168.6 (1-COCH3), 173.4 (C-6), 174.5 (C-8). MS (EI): m/z (rel. int.) = 459 (52) [M+• ], 417 (28), 348 (100), 306 (70), 277 (18), 257 (10), 171 (35), 160 (7), 91 (10). Anal. Calcd for C29H25N3O5: C, 67.96; H, 5.48; N, 9.14. Found: C, 67.80; H, 5.49; N, 8.76.

25

Physical Data of 1-Acetyl-5-(4-ethoxyphenyl)-3-(2-hydroxyphenyl)-7-methyl-6,8-dioxopyrrolo[3,4- g ]-5,5a,8a,8b-tetrahydroindazole ( 8c).
Mp 244-245 °C. 1H NMR (300.13 MHz, CDCl3): δ = 1.42 (t, 3 H, J = 7.0 Hz, 4′′-OCH2CH 3), 2.46 (s, 3 H, 1-COCH 3), 2.89 (s, 3 H, 7-CH 3), 3.56 (br d, 1 H, J = 8.6 Hz, H-5a), 4.70 (br d, 1 H, J = 7.6 Hz, H-5), 4.02 (dq, 2 H, J = 7.0 Hz, 4′′-OCH 2CH3), 4.42 (dd, 1 H, J = 8.6, 8.0 Hz, H-8a), 4.80 (dd, 1 H, J = 8.0, 3.8 Hz, H-8b), 6.96 (dd, 1 H, J = 7.6, 3.8 Hz, H-4), 6.88 (d, 2 H, J = 8.7 Hz, H-3′′,5′′), 6.98 (ddd, 1 H, J = 7.6, 7.4, 1.0 Hz, H-5′), 7.09 (dd, 1 H, J = 8.2, 1.0 Hz, H-3′), 7.23 (d, 2 H, J = 8.7 Hz, H-2′′,6′′), 7.37 (ddd, 1 H, J = 8.2, 7.4, 1.5 Hz, H-4′), 7.70 (dd, 1 H, J = 7.6, 1.5 Hz, H-6′), 9.81 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 14.8 (4′′-OCH2 CH3), 21.5 (1-COCH3), 25.3 (7-CH3), 41.5 (C-8a), 41.8 (C-5), 43.0 (C-5a), 55.7 (C-8b), 63.6 (4′′-OCH2CH3), 114.3 (C-1′), 115.2 (C-3′′,5′′), 117.6 (C-3′), 119.7 (C-5′), 125.9 (C-4), 127.6 (C-6′), 127.9 (C-2′′,6′′), 128.2 (C-1′′), 131.8 (C-4′), 138.2 (C-3a), 149.6 (C-3), 157.0 (C-2′), 158.3 (C-4′′), 168.4 (1-COCH3), 173.9 (C-6), 177.7 (C-8). MS (EI): m/z (rel. int.) = 459 (46) [M+• ], 417 (29), 348 (14), 306 (42), 295 (100), 282 (14), 210 (21), 171 (36), 135 (16), 77 (5). Anal. Calcd for C29H25N3O5: C, 67.96; H, 5.48; N, 9.14. Found: C, 67.91; H, 5.45; N, 9.16.

26

Optimised Experimental Procedure.
A mixture of each of the appropriate 1-acetyl-3-(2-hydroxyphenyl)-7-methyl-5-phenyl-6,8-dioxopyrrolo[3,4-g]-5,5a,8a,8b-tetrahydroindazoles 7a,b,d or 8c and DDQ (1:3 mol ratio) in 1,2,4-trichlorobenzene was irradiated at atmospheric pressure in an Ethos SYNTH microwave (Milestone Inc.), at 800 W for 30 min. The crude product was purified by column chromatography, using light PE as eluent, to remove the 1,2,4-trichlorobenzene, followed by EtOAc to remove the reaction product, which was further purified by TLC with a 9:1 mixture of CHCl3-EtOAc as eluent. The residue was recrystallised from EtOH to give 5-aryl-3-(2-hydroxyphenyl)-7-methyl-6,8-dioxopyrrolo[3,4-g]indazoles (9a from 7a, 85%; 9b from 7b, 32%; 9c from 8c, 31%; 9d from 7d, 34%).

27

Physical Data of 3-(2-Hydroxyphenyl)-7-methyl-5-phenyl-6,8-dioxopyrrolo[3,4- g ]indazole ( 9a).
Mp >275 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.21 (s, 3 H, NCH 3), 7.05 (ddd, 1 H, J = 7.7, 7.6, 1.2 Hz, H-5′), 7.16 (dd, 1 H, J = 8.1, 1.2 Hz, H-3′), 7.36 (ddd, 1 H, J = 7.6, 8.1, 1.6 Hz, H-4′), 7.48-7.61 (m, 4 H, H-2′′,3′′,5′′,6′′), 8.02 (dd, 1 H, J = 7.7, 1.6 Hz, H-6′), 8.44 (s, 1 H, H-4), 10.47 (s, 1 H, NH), 11.27 (s, 1 H, 2′-OH). 13C NMR (75.47 MHz, CDCl3): δ = 24.0 (NCH3), 116.2 (C-1′), 117.7 (C-3′), 119.8 (C-5′), 130.2 (C-4), 127.3 (C-6′), 128.2 (C-2′′,6′′), 129.7 (C-3′′,5′′), 130.5 (C-4′), 128.5 (C-4′′), 133.1 (C-8b), 136.6 (C-5,1′′), 145.7 (C-3), 156.3 (C-2′), 133.4 (C-3a), 128.2 (C-5a), 116.5 (C-8a), 167.9 (C-6,8). MS (EI): m/z (rel. int.) = 369 (100) [M+• ], 326 (3), 311 (3), 284 (5), 255 (5), 226 (4), 164 (3), 91 (2).