Synlett 2006(6): 960-961  
DOI: 10.1055/s-2006-939055
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

N-Iodosuccinimide (NIS)

Adam Sniady*
Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
e-Mail: aksniady@oakland.edu;
Further Information

Publication History

Publication Date:
14 March 2006 (online)

Introduction

N-Iodosuccinimide (NIS) is a well-known iodination ­reagent that has found many applications in organic synthesis since it was first reported by Bunge. [1] [2] It is a colorless, stable solid, commercially available, and is widely used in organic transformations. It can be applied for ­iodination of arenes, [3] [4] halodecarboxylation, [5] [6] iodolysis of the Si-C bond, [7] [8] and chemoselective cleavage of silyl ethers. [9] Recent reports employ NIS in ring-opening reactions [10] or electrophilic cyclizations to yield substi­tuted furans [11] and isoxazolidines. [12] Some of the examples ­reported in this article have roots in earlier reactions that have already been reviewed. [13]

One way to prepare NIS is to combine N-silversuccin­imide and molecular iodine. The reaction is carried out in dioxane, since in acetone the formation of a lachrymatory side-product was observed. [2] NIS can also be generated in situ from sodium iodide and N-chlorosuccinimide in ­acetonitrile. [14] The use of Na125I in the last process leads to isotopically labelled NIS, rendering the reagent useful in medical sciences for the preparation of radiolabelled ­diagnostic or therapeutic agents. [15]

    References and Notes

  • 1 Bunge N. Justus Liebigs Ann. Chem.  1870,  7:  117 
  • 2 Djerassi C. Lenk CT. J. Am. Chem. Soc.  1953,  75:  3493 
  • 3 Castanet A.-S. Colobert F. Broutin P.-E. Tetrahedron Lett.  2002,  43:  5047 
  • 4 Prakash GKS. Mathew T. Hoole D. Esteves PM. Wang Q. Rasul G. Olah GA. J. Am. Chem. Soc.  2004,  126:  15770 
  • 5 Naskar D. Das SK. Giribabu L. Maiya BG. Roy S. Organometallics  2000,  19:  1464 
  • 6 Das JP. Roy S. J. Org. Chem.  2002,  67:  7861 
  • 7 Morita R. Shirakawa E. Tsuchimoto T. Kawakami Y. Org. Biomol. Chem.  2005,  3:  1263 
  • 8 Nishikawa T. Shibuya S. Hosokawa S. Isobe M. Synlett  1994,  485 
  • 9 Karimi B. Zamani A. Zareyee D. Tetrahedron Lett.  2004,  45:  9139 
  • 10 Takasu K. Nagao S. Ihara M. Tetrahedron Lett.  2005,  46:  1005 
  • 11 Sniady A. Wheeler KA. Dembinski R. Org. Lett.  2005,  7:  1769 
  • 12 Lombardo M. Rispoli G. Licciulli S. Trombini C. Dhavale DD. Tetrahedron Lett.  2005,  46:  3789 
  • 13 Speicher A. Eicher T. J. Prakt. Chem.  1998,  340:  278 
  • 14 Thiebes C. Prakash GKS. Petasis NA. Olah GA. Synlett  1998,  141 
  • 15 Dewanjee MK. Radioiodination: Theory, Practice, and Biological Applications   Kluwer Academic Publishers; Boston: 1992.  p.115 
  • 16 Paolini L. Petricci E. Corelli F. Botta M. Synthesis  2003,  1039 
  • 17 Singletary JA. Lam H. Dudley GB. J. Org. Chem.  2005,  70:  739 
  • 18 Hofmeister H. Annen K. Laurent H. Wiechert R. Angew. Chem., Int. Ed. Engl.  1984,  23:  727 
  • 19 Amatore C. Blart E. Genet JP. Jutand A. Lemaire-Audoire S. Savignac M. J. Org. Chem.  1995,  60:  6829 
  • 20a Yao T. Zhang X. Larock RC. J. Org. Chem.  2005,  70:  7679 
  • 20b Colobert F. Castanet A.-S. Abillard O. Eur. J. Org. Chem.  2005,  3334 
  • 21 Ma S. Lu L. J. Org. Chem.  2005,  70:  7629