References and Notes
<A NAME="RS12405ST-1A">1a</A>
Kamijo S.
Dudley GB.
J. Am. Chem. Soc.
2005,
127:
5028
<A NAME="RS12405ST-1B">1b</A>
Kamijo S.
Dudley GB.
Org. Lett.
2006,
8:
175 ; a full account of this work, which includes a wider range of nucleophiles, is
in preparation
<A NAME="RS12405ST-2A">2a</A>
Grob CA.
Schiess PW.
Angew. Chem., Int. Ed. Engl.
1967,
6:
1
<A NAME="RS12405ST-2B">2b</A>
Grob CA.
Angew. Chem., Int. Ed. Engl.
1969,
8:
535
<A NAME="RS12405ST-2C">2c</A>
Wharton PS.
Hiegel GA.
J. Org. Chem.
1965,
30:
3254
<A NAME="RS12405ST-2D">2d</A>
Weyerstahl P.
Marschall H. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1041
<A NAME="RS12405ST-3">3</A> Analogues of [A] in which the triflate is replaced by a halide fragment under flash vacuum pyrolysis
conditions:
Coke JL.
Williams HJ.
Natarajan S.
J. Org. Chem.
1977,
42:
2380
<A NAME="RS12405ST-4">4</A>
Smith RG.
Daterman GE.
Daves GD.
Science
1975,
188:
63
<A NAME="RS12405ST-5A">5a</A>
Hulme M.
Gray T.
Environ. Entomol.
1994,
23:
1097
<A NAME="RS12405ST-5B">5b</A>
Welter SC.
Pickel C.
Millar J.
Cave F.
Van Steenwyk RA.
Dunley J.
Calif. Agric.
2005,
59:
17
There are more than thirty previous syntheses of 1. Selected examples and leading references:
<A NAME="RS12405ST-6A">6a</A>
Smith RG.
Daves GD.
Daterman GE.
J. Org. Chem.
1975,
40:
1593
<A NAME="RS12405ST-6B">6b</A>
Kocienski PJ.
Cernigliaro GJ.
J. Org. Chem.
1976,
41:
2927
<A NAME="RS12405ST-6C">6c</A>
Mori K.
Uchida M.
Matsui M.
Tetrahedron
1977,
33:
385
<A NAME="RS12405ST-6D">6d</A>
Fetizon M.
Lazare C.
J. Chem. Soc., Perkin Trans. 1
1977,
842
<A NAME="RS12405ST-6E">6e</A>
Akermark B.
Ljungqvist A.
J. Org. Chem.
1978,
43:
4387
<A NAME="RS12405ST-6F">6f</A>
Trost BM.
Ornstein PL.
Tetrahedron Lett.
1981,
22:
3463
<A NAME="RS12405ST-6G">6g</A>
Murata Y.
Inomata K.
Kinoshita H.
Kotake H.
Bull. Chem. Soc. Jpn.
1983,
56:
2539
<A NAME="RS12405ST-6H">6h</A>
Reddy GB.
Mitra RB.
Synth. Commun.
1983,
16:
1723
<A NAME="RS12405ST-6I">6i</A>
Pramod K.
Ramanathan H.
Subba Rao GSR.
J. Chem. Soc., Perkin Trans. 1
1983,
7
<A NAME="RS12405ST-6J">6j</A>
Sodeoka M.
Shibasaki M.
J. J. Org. Chem.
1985,
50:
1147
<A NAME="RS12405ST-6K">6k</A>
Wenkert E.
Ferreira VF.
Michelotti EL.
Tingoli M.
J. Org. Chem.
1985,
50:
719
<A NAME="RS12405ST-6L">6l</A>
Ballini R.
J. Chem. Soc., Perkin Trans. 1
1991,
1419
<A NAME="RS12405ST-6M">6m</A>
Stowell JC.
Polito MA.
J. Org. Chem.
1992,
57:
4560
<A NAME="RS12405ST-6N">6n</A>
White J.
Whiteley CG.
Synthesis
1993,
1141
<A NAME="RS12405ST-6O">6o</A>
Hayes JF.
Shipman M.
Twin H.
J. Org. Chem.
2002,
67:
935
<A NAME="RS12405ST-7">7</A> Acyl triflate 4 (R = Tf) was prepared from 2-pentyl-1,3-cyclohexanedione using triflic anhydride
and pyridine by analogy to our published procedure, see. ref. 1. 1H NMR (300 MHz, CDCl3): δ = 2.75 (t, J = 6.2 Hz, 2 H), 2.47 (t, J = 6.8 Hz, 2 H), 2.32 (t, J = 7.6 Hz, 2 H), 2.07 (app quint, J = 6.5 Hz, 2 H), 1.22-1.42 (m, 6 H), 0.88 (t, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 197.3, 161.7, 132.3, 36.9, 31.7, 28.64, 28.65, 28.0, 23.7, 22.2, 20.6, 13.8.
HRMS (CI+): m/z calcd for C12H18O4SF3: 315.0878; found: 315.0893
<A NAME="RS12405ST-8">8</A>
Synthesis of Alkynyl Ketone (
5)
To a stirred solution of vinylogous acyl triflate 4
[7]
(100 mg, 0.32 mmol) in toluene (3 mL) at -78 °C was added n-decyl-magnesium bromide (0.31 mL, 0.93 M in Et2O, 0.29 mmol). The reaction mixture was warmed to r.t. over 1 h, heated at 60 °C for
1.5 h, cooled to r.t., quenched with half-sat. NH4Cl solution (10 mL), and extracted with Et2O. The combined organic phases were washed with H2O, dried (MgSO4), concentrated, and purified on silica gel (elution with 1% EtOAc-hexanes) to afford
alkynyl ketone 5 as an oil that solidified on standing; yield 70 mg (80%). 1H NMR (300 MHz, CDCl3): δ = 2.52 (t, J = 7.3 Hz, 2 H), 2.40 (t, J = 7.5 Hz, 2 H), 2.08-2.23 (m, 4 H), 1.74 (app quint, J = 7.0 Hz, 2 H), 1.43-1.64 (m, 4 H), 1.19-1.38 (m, 18 H), 0.83-0.95 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 210.9, 81.1, 79.1, 43.0, 41.3, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 28.8, 23.9,
23.0, 22.6, 22.2, 18.7, 18.2, 14.1, 13.1. HRMS (CI+): m/z calcd for C21H39O: 307.3001; found: 307.2999.
<A NAME="RS12405ST-9">9</A>
The Pd/BaSO4 and pyridine must be mixed before adding alkyne 5 for best results.
<A NAME="RS12405ST-10">10</A>
1H NMR (500 MHz, CDCl3): δ = 5.37-5.41 (m, 2 H), 2.35-2.41 (m, 4 H), 1.94-2.06 (m, 4 H), 1.63 (app quint,
J =7.4 Hz, 2 H), 1.21-1.37 (m, 22 H), 0.85-0.90 (m, 6 H). HRMS (CI+): m/z calcd for C21H41O: 309.3157; found: 309.3158.
<A NAME="RS12405ST-11A">11a</A>
Eschenmoser A.
Felix D.
Ohloff G.
Helv. Chim. Acta
1967,
50:
708
<A NAME="RS12405ST-11B">11b</A>
Felix D.
Shreiber J.
Ohloff G.
Eschenmoser A.
Helv. Chim. Acta
1971,
54:
2896
<A NAME="RS12405ST-11C">11c</A>
Tanabe M.
Crowe DF.
Dehn RL.
Tetrahedron Lett.
1967,
3943
<A NAME="RS12405ST-11D">11d</A>
Tanabe M.
Crowe DF.
Dehn RL.
Detre G.
Tetrahedron Lett.
1967,
3739
<A NAME="RS12405ST-12A">12a</A>
Rosenmund KW.
Bach H.
Chem. Ber.
1961,
94:
2394
<A NAME="RS12405ST-12B">12b</A>
Piers E.
Grierson JR.
J. Org. Chem.
1977,
42:
3755