References and Notes
<A NAME="RD32205ST-1">1</A>
Agami C.
Couty F.
Evano G.
Tetrahedron: Asymmetry
2002,
13:
297
<A NAME="RD32205ST-2A">2a</A>
Couty F.
Durrat F.
Prim D.
Tetrahedron Lett.
2003,
44:
5209
<A NAME="RD32205ST-2B">2b</A>
Couty F.
Durrat F.
Evano G.
Prim D.
Tetrahedron Lett.
2004,
45:
7525
<A NAME="RD32205ST-3">3</A>
Couty F.
Durrat F.
Evano G.
Synlett
2005,
1666
<A NAME="RD32205ST-4">4</A>
Couty F.
Evano G.
Rabasso N.
Tetrahedron: Asymmetry
2003,
14:
2407
<A NAME="RD32205ST-5">5</A>
Agami C.
Couty F.
Rabasso N.
Tetrahedron Lett.
2002,
43:
4633
<A NAME="RD32205ST-6">6</A>
Bräuner-Osborne H.
Bunch L.
Chopin N.
Couty F.
Evano G.
Jensen AA.
Kusk M.
Nielsen B.
Rabasso N.
Org. Biomol. Chem.
2005,
3:
3926
For related examples of chlorination of β-amino alcohols, see:
<A NAME="RD32205ST-7A">7a</A>
Weber K.
Kuklinski S.
Gmeiner P.
Org. Lett.
2000,
2:
647
<A NAME="RD32205ST-7B">7b</A>
Chong H.
Ganguly B.
Broker GA.
Rogers RD.
Brechbiel MW.
J. Chem. Soc., Perkin Trans. 1
2002,
2080
<A NAME="RD32205ST-7C">7c</A>
Couty F.
Evano G.
Prim D.
Tetrahedron Lett.
2005,
46:
2253
For other syntheses of azetidinic α-amino acids, see:
<A NAME="RD32205ST-8A">8a</A>
Kozikowski AP.
Tückmantel W.
Reynolds IJ.
Wrobleski JT.
J. Med. Chem.
1990,
33:
1561
<A NAME="RD32205ST-8B">8b</A>
Kozikowski AP.
Liao Y.
Tückmantel W.
Wang S.
Pshenichkin S.
Surin A.
Thomsen C.
Wrobleski JT.
J. Bioorg. Med. Chem. Lett.
1996,
6:
2559
<A NAME="RD32205ST-8C">8c</A>
Hanessian S.
Fu JM.
Chiara J.-L.
Di Fabio R.
Tetrahedron Lett.
1993,
34:
4157
<A NAME="RD32205ST-8D">8d</A>
Hanessian S.
Bernstein N.
Yang R.-Y.
Maguire R.
Bioorg. Med. Chem. Lett.
1999,
9:
1437
<A NAME="RD32205ST-8E">8e</A>
Couty F.
Evano G.
Rabasso N.
Tetrahedron: Asymmetry
2003,
14:
2407
<A NAME="RD32205ST-8F">8f</A>
Jiang J.
Shah H.
DeVita RJ.
Org. Lett.
2003,
5:
4101
<A NAME="RD32205ST-8G">8g</A>
Gerona-Navarro G.
Angeles Bonache M.
Alías M.
Pérez de Vega MJ.
García-López T.
Pilar López M.
Cativiela C.
González-Muñiz R.
Tetrahedron Lett.
2004,
45:
2193
<A NAME="RD32205ST-8H">8h</A>
Sajjadi Z.
Lubell WD.
J. Peptide Res.
2005,
65:
298
<A NAME="RD32205ST-8I">8i</A>
Couty F.
Evano G.
Vargas-Sanchez M.
Bouzas G.
J. Org. Chem.
2005,
70:
9028
<A NAME="RD32205ST-9">9</A>
Hart PA.
Rich DH. In The Practice of Medicinal Chemistry
3rd ed.:
Wermuth CG.
Academic Press;
London:
2000.
<A NAME="RD32205ST-10">10</A>
Čaplar V.
Raza Z.
Katalenić D.
inić M.
Croat. Chem. Acta
2003,
76:
23
<A NAME="RD32205ST-11">11</A>
Rajender Reddy L.
Bhanumati N.
Rama Rao K.
Chem. Commun.
2000,
2321
<A NAME="RD32205ST-12">12</A>
Concellón JM.
Pablo LB.
Pérez-Andrés JA.
Tetrahedron Lett.
2000,
41:
1231
<A NAME="RD32205ST-13">13</A>
Pirkle WH.
Hoekstra MS.
J. Am. Chem. Soc.
1976,
98:
1832
<A NAME="RD32205ST-14">14</A>
All new compounds were characterized by 1H NMR and 13C NMR spectroscopy, mass spectral analysis, and for most relevant compounds, by elemental
analysis.
Typical Procedure for the Preparation of Chloride 19.
To a solution of amino alcohol 11 (1.20 g, 4.30 mmol) in CH2Cl2 (30 mL) was added SOCl2 (0.64 mL, 8.81 mmol) at 0 °C and it was then refluxed for 3 h. After the completion
of the reaction, the excess SOCl2 was neutralized by a sat. aq solution of NaHCO3 (10 mL). Extraction of the reaction mixture using Et2O followed by usual workup gave a mixture of chlorides (2:1 ratio) that were purified
by flash chromatography (EtOAc-PE 1:9, 1.15 g, 90%).The formed chlorides (1.15 g)
were then dissolved in DMF (10 mL) and heated at 60 °C for 60 h. DMF was removed under
vacuo and the obtained chloride was filtered on silica gel (EtOAc-PE 1:9) and gave
pure chloride 22 (1.09 g, 95%) as a thick oil.
R
f
0.85 (EtOAc-PE 9:1); [α]D
20 -6.6 (c 0.7, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.37 (br s, 12 H), 2.80 (dd, J = 13.7, 6.8 Hz, 1 H), 2.93 (dd, J = 13.7, 6.8 Hz, 1 H), 3.19 (s, 2 H), 3.78 (d, J = 3.4 Hz, 2 H), 3.87-3.94 (m, 1 H), 7.14-7.20 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 23.0, 28.2, 55.7, 56.2, 58.7, 62.5, 81.0, 127.2, 128.7, 128.9, 139.0, 170.7.
MS (CI, NH3 gas): m/z (%) = 320 (27) [M + K+], 264 (8), 242 (61).
Typical Procedure for the Azetidine Formation, Starting with Chloride 22.
To a solution of chloride 22 (1.50 g, 5.04 mmol) in THF (20 mL) and HMPA (2 mL) was added dropwise at -90 °C a
solution of LiHMDS (1 M solution in THF, 7.56 mL, 7.56 mmol). The reaction was monitored
by TLC and then quenched by the addition of an aq sat. solution of NH4Cl (10 mL) at 0 °C. Extraction of the reaction mixture using Et2O gave, after usual workup, a residue that was purified by flash chromatography (EtOAc-PE
1:9) to give cis-azetidine 36 (1.05 g, 80%). R
f
0.85 (EtOAc-PE 15:85); [α]D
20 +91.3 (c 0.4, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 1.23 (d, J = 7.0 Hz, 3 H), 1.40 (s, 9 H), 2.58-2.69 (m, 1 H), 2.90-3.10 (m, 2 H), 3.54 (d, J = 12.5 Hz, 1 H), 3.68 (d, J = 8.0 Hz, 1 H), 3.74 (d, J = 12.5 Hz, 1 H), 7.18-7.39 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 15.5, 28.2, 28.6, 56.8, 61.6, 67.3, 80.6, 127.0, 128.2, 129.2, 137.5, 170.8.
MS (CI, NH3 gas): m/z (%) = 300 (10), 284 (74), 262 (28) [M+], 206 (100). Anal. Calcd for C16H23NO2 (%): C, 73.53; H, 8.87; N, 5.36. Found: C, 73.39; H, 9.01; N, 5.42.