Synlett 2006(3): 0496-0497  
DOI: 10.1055/s-2006-932456
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)

Sandip B. Bharate*
Department of Natural Products, National Institute of ­Pharmaceutical Education and Research (NIPER), SAS nagar, ­Punjab-160062, India
e-Mail: sandipbharate@yahoo.com;
Further Information

Publication History

Publication Date:
06 February 2006 (online)

Introduction

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [1] is a powerful oxidizing agent and has proved to be versatile reagent for various organic transformations. Apart from its well-known applications as a dehydrogenating and oxidizing agent, in recent years it has found number of other applications in synthetic chemistry, including deprotection of various functional groups, cleavage of linker ­molecules from solid support, introduction of unsaturation and C-C, C-O and C-N bond-formation reactions. In recent years, it has shown wide potential for oxidative ­cyclization leading to a variety of heterocyclic ring skeletons such as benzopyrans, xanthenes, alkylindans, benz­oxazoles, and oxazolidinones. It has found application in steroid chemistry and in the synthesis of complex natural products, [2] where its unique regioselective properties gave excellent results for the preparation of key intermediates. DDQ was also found to be an excellent reagent to cleave methoxybenzyl ethers [3] and an efficient catalyst for the ­alcoholysis of epoxides [4] as well as for the hydrolysis of acetals. [5]

DDQ is commercially available and its first synthesis was described by Thiele and Gunther in 1906. It can be ­prepared by a six-step procedure involving cyanation and chlorination of benzoquinone. [6]

    References

  • 1 Walker D. Waugh TD. J. Org. Chem.  1965,  30:  3240 
  • 2a Yu J. Wearing XZ. Cook JM. Tetrahedron Lett.  2004,  45:  3937 
  • 2b Mergott DJ. Frank SA. Roush WR. Proc. Nat. Acad. Sci. U.S.A.  2004,  101:  11955 
  • 2c Gunnar E. Markus K. Synlett  2005,  655 
  • 2d Sylvie A. Karine AJ. Andre G. Synlett  2005,  139 
  • 3 Oikawa Y. Tanaka T. Horita K. Yoshioka T. Yonemitsu O. Tetrahedron Lett.  1984,  25:  5393 
  • 4 Iranpoor N. Baltock IM. Tetrahedron Lett.  1990,  31:  735 
  • 5 Tanemura K. Suzuki T. Horaguchi T. J. Chem. Soc., Chem. Commun.  1992,  979 
  • 6a Thiele J. Gunther F. Justus Liebigs Ann. Chem.  1906,  349:  45 
  • 6b Fieser L. Fieser M. Reagents for Organic Synthesis   Vol. 1:  Wiley; New York: 1967.  p.215 
  • 7 Van de water RW. Pettus TRR. Tetrahedron Lett.  2002,  58:  5367 
  • 8a Chiba K. Arakawa T. Tada M. Chem. Commun.  1996,  1763 
  • 8b Matsumoto T. Singh IP. Etoh H. Tanaka H. Chem. Lett.  2001,  210 
  • 9a Kim S. Kitano Y. Tada M. Chiba K. Tetrahedron Lett.  2000,  41:  7079 
  • 9b Chauncey MA. Grundon MF. Synthesis  1990,  1005 
  • 10 Ying BP. Trogden BG. Kohlman DT. Liang SX. Xu YC. Org. Lett.  2004,  6:  1523 
  • 11 Kalena GP. Jadhav SM. Banerji A. Molecules  2000,  5:  240 
  • 12a Lee H. Harvey RG. J. Org. Chem.  1983,  48:  749 
  • 12b Lee H. Harvey RG. J. Org. Chem.  1988,  53:  4587 
  • 13 Eynde JJV. Delfosse F. Lor P. Haverbeke YV. Tetrahedron  1995,  51:  5813 
  • 14 Gryko DT. Jadach K. J. Org. Chem.  2001,  66:  4267 
  • 15 Chang J. Zhao K. Pan S. Tetrahedron Lett.  2002,  43:  951 
  • 16 Oh HS. Hahn HG. Cheon SH. Hac DC. Tetrahedron Lett.  2000,  41:  5069 
  • 17a Sharma GVM. . ; Tetrahedron Lett.  2001,  42:  5571 
  • 17b Xia J. Abbas SA. Locke RD. Piskorz CF. Alderfer JL. Matta KL. Tetrahedron Lett.  2000,  41:  169 
  • 17c Vetele JM. Tetrahedron  2002,  58:  5689