Synthesis 2006(9): 1423-1426  
DOI: 10.1055/s-2006-926442
© Georg Thieme Verlag Stuttgart · New York

New Highly Efficient Method for the Synthesis of tert-Alkyl Nitroso Compounds

Ser Kiang Queka,b, Ilya M. Lyapkalo*a, Han Vinh Huynhb
a Institute of Chemical & Engineering Sciences Ltd., 1 Pesek Road, Jurong Island, 627833 Singapore
b Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
Fax: +6563166184; e-Mail:;
Further Information

Publication History

Received 13 December 2005
Publication Date:
11 April 2006 (online)


The syntheses of tert-alkyl nitroso compounds RCH2CMe2N=O from commercially available tert-alkyl amines RCH2CMe2NH2 proceed cleanly via the intermediacy of the benzoyl derivatives RCH2CMe2NHOC(O)Ph and the corresponding hydroxylamines RCH2CMe2NHOH. Since the intermediates require no purification in the course of the transformations, the overall yields of the isolated crystalline nitroso dimers (75-80% for R = H, 75% for R = Me and 66% for R = Me3C) are based on the corresponding amine precursors. In the latter case (R = Me3C), significant steric demands and hydrophobicity of Me3CCH2CMe2 group necessitate the application of more efficient reagents and conditions on the debenzoylation and oxidation steps. The syntheses are perfectly suitable for scale-up and were successfully performed on up to 500-mmol scale.


  • 1a The Chemistry of the Nitro and Nitroso Groups   Feuer H. Wiley; New York: 1969. 
  • 1b Hanefeld W. In Organic Nitrogen Compounds I, C-Nitroso Compounds, Houben-Weyl   Vol. E16a, 4th ed.:  Klamann D. Thieme; Stuttgart: 1990.  Part 2. p.950-996  
  • 1c Askani R. Taber DF. In Comprehensive Organic Synthesis, Synthesis of Nitroso, Nitro and Related Compounds   Vol. 6:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.103 
  • 1d Kabalka GW. Varma RS. In Comprehensive Organic Synthesis, Reduction of Nitro and Nitroso Compounds   Vol. 8:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.363 
  • 2a Janzen EG. Blackburn BJ. J. Am. Chem. Soc.  1969,  91:  4481 
  • 2b Perkins MJ. Chem. Soc., Spec. Publ.  1970,  24:  97 
  • 3a Nakazono S. Karasawa S. Koga N. Iwamura H. Angew. Chem. Int. Ed.  1998,  37:  1550 ; Angew. Chem. 1998, 110, 1645
  • 3b Mathevet F. Luneau D. J. Am. Chem. Soc.  2001,  123:  7465 
  • 4 Lyapkalo IM. Ioffe SL. Strelenko YA. Tartakovsky VA. Russ. Chem. Bull.  1996,  45:  856 
  • 5 Corey EJ. Gross AW. Tetrahedron Lett.  1984,  25:  491 
  • 7 Bamberger E. Seligmann R. Chem. Ber.  1903,  36:  703 
  • 8a Zajac WW. Walters TR. Woods JM. Synthesis  1988,  808 
  • 8b Zajac WW. Darcy MG. Subong AP. Buzby JH. Tetrahedron Lett.  1989,  30:  6495 
  • 8c Zajac WW. Walters TR. Woods JM. J. Org. Chem.  1989,  54:  2468 
  • 9a Holman RJ. Perkins MJ. J. Chem. Soc. C  1970,  2195 ; and references cited therein
  • 9b Holman RJ. Perkins MJ. J. Chem. Soc. C  1971,  2324 
  • 9c Greer ML. Sarker H. Mendicino ME. Blackstock SC. J. Am. Chem. Soc.  1995,  117:  10460 
  • 10a Stowell JC. J. Org. Chem.  1971,  36:  3055 
  • 10b Smith RJ. Pagni RM. J. Org. Chem.  1981,  46:  4307 
  • 11 Synthesis of (CD3)3CN=O is described but no detailed procedure is given: Chiarelli R. Rassat A. Tetrahedron  1973,  29:  3639 
  • 12 Emmons WD. J. Am. Chem. Soc.  1957,  79:  6522 
  • 13 A laborious 3-step preparation of the product A on a large scale via the hydroxylamine 3a is described: Calder A. Forrester AR. Hepburn SP. Org. Synth. Coll. Vol. VI   Wiley; New York: 1972.  p.803 
  • 14a Alewood PF. Calder IC. Richardson RL. Synthesis  1981,  121 
  • 14b Psiorz M. Zinner G. Synthesis  1984,  217 
  • 14c White EH. Ribi M. Cho LK. Egger N. Dzadzic PM. Todd MJ. J. Org. Chem.  1984,  49:  4866 
  • 14d Zhao C.-X. Peng Y.-Y. Qu Y.-L. J. Fluorine Chem.  1993,  61:  171 
  • 15 A synthesis of the compound Ph(O)ONHCMe2CH2CMe3 (2c) is reported: Phanstiel O. Wang QX. Powell DH. Ospina MP. Leeson BA. J. Org. Chem.  1999,  64:  803 
  • 17 Referred to pKa[HCO3-]aq and pKa[HPO4 2-]aq: Handbook of Chemistry and Physics   81st ed.:  Lide DR. 2000-2001.  p.8-44-8-45  
  • 18 Bunting JW. Stefanidis D. J. Am. Chem. Soc.  1990,  112:  779 
  • 19 It was isolated at the following benzoyl cleavage step as a byproduct that was insoluble in water. The 1H NMR signals of the amide matches with those described in literature, see: Larsen J. Jorgensen KA. Christensen D. J. Chem. Soc., Perkin Trans. 1  1991,  1187 
  • 22 Dicks PF. Glover SA. Goosen A. McCleland CW. Tetrahedron  1987,  43:  923 
  • 25 Usuki T. Mita T. Lear MJ. Das P. Yoshimura F. Inoue M. Hirama M. Akiyama K. Tero-Kubota S. Angew. Chem. Int. Ed.  2004,  43:  5249 ; Angew. Chem. 2004, 116, 5361
  • 26a Hayami S. Inoue K. Chem. Lett.  1999,  7:  545 
  • 26b Itoh T. Matsuda K. Iwamura H. Angew. Chem. Int. Ed.  1999,  38:  1791 ; Angew. Chem. 1999, 111, 1886
  • 28 Stowell JC. Lau CM. J. Org. Chem.  1986,  51:  3355 

USD 285.80 for 5 g (ALDRICH 2005-2006).


Salt S is insoluble in CHCl3 but soluble in water and DMSO. 1H NMR (400.23 MHz, DMSO-d 6): δ = 1.20 (s, 9 H, CMe3), 4.36 (br s, NH3 +, exchange peak with water), 7.31-7.41 (m, 3 H, Ph, 2 × CHm + CHp), 7.88-7.91 (m, 2 H, Ph, 2 × CHo). 13C NMR (100.65 MHz, DMSO-d 6): δ = 28.9 (CMe 3), 48.6 (CNH3 +), 127.0, 128.5 (CHm, CHo), 129.5 (CHp), 168.2 (CO2 -).


The use of yet more basic KOH led to the complete hydrolysis of (PhCO2)2 to PhCO2K with the starting tert-butylamine (1a) remaining intact.


Interestingly, K2CO3 was efficient enough to provide a complete conversion of the more hydrophobic amine 1c to the benzoyl derivative 2c. Apparently, a fine balance between hydrophilicity, basicity and aqueous solubility precluded the formation of the respective tert-alkyl­-ammonium benzoate under the reaction conditions.


Dimerization time and hence the crystallization time dramatically increases with the increase of the steric demands of the tert-alkyl substituent: ca. 20-30 min for A, several hours in the refrigerator (+4 °C) for B, and at least a week in a deep freezer (-18 °C) for C. For the NMR study on the monomer-dimer equilibrium, see ref. 10a.


NMR monitoring of the blue liquid nitroso monomer C prior to the crystallization showed that it was sufficiently pure to be used as a reactant in subsequent transformations.


The research on new type of metal-free nitrogen bases is currently in progress in our laboratory.