Abstract
(R )-Homopipecolic acid methyl ester has been prepared on a multigram scale from 3,4-dihydro-2H -pyran in five steps and 36% overall yield. The stereochemistry was introduced via
an asymmetric Michael addition and a fractional crystallization.
Key words
piperidines - stereoselective synthesis - β-amino ester - Michael additions - fractional
crystallization
References <A NAME="RT00206SS-1">1 </A>
According to a Beilstein search; for some examples see references 2-7.
<A NAME="RT00206SS-2">2 </A>
Hermet J.-PR.
McGrath MJ.
O’Brien P.
Porter DW.
Gilday J.
Chem. Commun.
2004,
1830
<A NAME="RT00206SS-3A">3a </A>
Morley C.
Knight DW.
Share AC.
Tetrahedron: Asymmetry
1990,
1:
147
<A NAME="RT00206SS-3B">3b </A>
Ledoux S.
Marchalant E.
Célérier J.-P.
Lhommet G.
Tetrahedron Lett.
2001,
42:
5397
<A NAME="RT00206SS-4">4 </A>
Back TG.
Hamilton MD.
Lim VJJ.
Parvez M.
J. Org. Chem.
2005,
70:
967
<A NAME="RT00206SS-5">5 </A>
Barilli A.
Belinghieri F.
Passarella D.
Lesma G.
Riva S.
Silvani A.
Danieli B.
Tetrahedron: Asymmetry
2004,
15:
2921
<A NAME="RT00206SS-6">6 </A>
Angoli M.
Barilli A.
Lesma G.
Passarella D.
Riva S.
Silvani A.
Danieli B.
J. Org. Chem.
2003,
68:
9525
<A NAME="RT00206SS-7A">7a </A>
Danilewicz JC.
Abel SM.
Brown AD.
Fish PV.
Hawkeswood E.
Holland SJ.
James K.
McElroy AB.
Overington J.
Powling MJ.
Rance DJ.
J. Med. Chem.
2002,
45:
2432
<A NAME="RT00206SS-7B">7b </A>
Katori M.
Tamaki T.
Tanaka M.
Konoeda Y.
Yokota N.
Hayashi T.
Uchida Y.
Hui Y.
Takahashi Y.
Kakita A.
Kawamura A.
Transplant. Proc.
1999,
31:
1016
<A NAME="RT00206SS-7C">7c </A>
Groneberg RD,
Zhan J,
Askew B,
D’Amico D,
Han N,
Fotsch CH,
Liu Q,
Riahi B,
Zhu J,
Yang K,
Chen JJ, and
Nomak R. inventors; PCT Int. Appl. WO 2004092164.
<A NAME="RT00206SS-8">8 </A>
Ledoux S.
Célérier J.-P.
Lhommet G.
Tetrahedron Lett.
1999,
40:
9019
<A NAME="RT00206SS-9A">9a </A>
Chippindale AM.
Davies SG.
Iwamoto K.
Parkin RM.
Smethurst CAP.
Smith AD.
Rodriguez-Solla H.
Tetrahedron
2003,
59:
3253
<A NAME="RT00206SS-9B">9b </A>
Davies SG.
Iwamoto K.
Smethurst CAP.
Smith AD.
Rodriguez-Solla H.
Synlett
2002,
1146
<A NAME="RT00206SS-9C">9c </A>
Enders D.
Wiedemann J.
Justus Liebigs Ann. Chem.
1977,
699
<A NAME="RT00206SS-10A">10a </A>
Wanner KT.
Kärtner A.
Arch. Pharm. (Weinheim, Ger.)
1987,
320:
1253
<A NAME="RT00206SS-10B">10b </A>
Wanner KT.
Kärtner A.
Heterocycles
1987,
26:
921
<A NAME="RT00206SS-10C">10c </A>
Matsumura Y.
Kanda Y.
Shirai K.
Onomura O.
Maki T.
Tetrahedron
2000,
56:
7411
<A NAME="RT00206SS-11A">11a </A>
Calvet S.
David O.
Vanucci-Bacqué C.
Fargeau-Bellassoued M.-C.
Lhommet G.
Tetrahedron
2003,
59:
6333
<A NAME="RT00206SS-11B">11b </A>
David O.
Calvet S.
Chau F.
Vanucci-Bacqué C.
Fargeau-Bellassoued M.-C.
Lhommet G.
J. Org. Chem.
2004,
69:
2888
<A NAME="RT00206SS-11C">11c </A>
Pousset C.
Callens R.
Marinetti A.
Larchevêque M.
Synlett
2004,
2766
<A NAME="RT00206SS-12A">12a </A>
Gray D.
Concellón C.
Gallagher T.
J. Org. Chem.
2004,
69:
4849
<A NAME="RT00206SS-12B">12b </A>
DeVita RJ.
Goulet MT.
Wyvratt MJ.
Fisher MH.
Lo J.-L.
Yang YT.
Cheng K.
Smith RG.
Bioorg. Med. Chem. Lett.
1999,
9:
2621
<A NAME="RT00206SS-13A">13a </A>
Pousset C.
Callens R.
Haddad M.
Larchevêque M.
Tetrahedron: Asymmetry
2004,
15:
3407
<A NAME="RT00206SS-13B">13b </A>
Chung H.-k.
Kim H.-w.
Chung K.-H.
Heterocycles
1999,
51:
2983
For some examples of enantioselective Michael additions of lithiated derivatives of
4 to α,β-unsaturated esters, see:
<A NAME="RT00206SS-14A">14a </A>
Davies SG.
Fenwick DR.
J. Chem. Soc., Chem. Commun.
1995,
1109
<A NAME="RT00206SS-14B">14b </A>
Davies SG.
Dixon DJ.
J. Chem. Soc., Perkin Trans. 1
1998,
2635
<A NAME="RT00206SS-14C">14c </A>
Bull SD.
Davies SG.
Roberts PM.
Savory ED.
Smith AD.
Tetrahedron
2002,
58:
4629
<A NAME="RT00206SS-14D">14d </A>
Ref. 9a.
<A NAME="RT00206SS-15">15 </A> For related approaches to the corresponding ethyl and tert -butyl esters, see ref. 2 and the following:
Baenziger M.
Gobbi L.
Riss BP.
Schaefer F.
Vaupel A.
Tetrahedron: Asymmetry
2000,
11:
2231
<A NAME="RT00206SS-16">16 </A>
In the presence of two equivalents of (S )-4 and no additional base, compound 5 was obtained in a slightly improved yield (86%), but with a decreased diastereomeric
ratio (67:33).
<A NAME="RT00206SS-17">17 </A>
The analogous cyclization of the tosyloxy derivative of 3 gave comparable results; nevertheless this route was less efficient - the tosyl derivative
was prepared in a lower yield (73% from 2 ).
<A NAME="RT00206SS-18">18 </A>
For a related cyclization of an ω-iodo enoate, see ref. 2.
<A NAME="RT00206SS-19">19 </A>
Tsukada N.
Shimada T.
Gyoung YS.
Asao N.
Yamamoto Y.
J. Org. Chem.
1995,
60:
143
<A NAME="RT00206SS-20">20 </A>
Mesylate (E )-3 was synthesized from (E )-2 , which was accessible by distillation of (E/Z )-2 , see ref. 23.
<A NAME="RT00206SS-21">21 </A>
The crude product can also be purified by distillation (bp 75-85 °C, 0.02 mbar) through
a Vigreux column (10 cm). Even though the lower boiling fractions were enriched with
the minor diastereomer (S ,S )-5 , satisfactory separation of the two diastereomers was not achieved.
<A NAME="RT00206SS-22">22 </A>
There is just a short filtration through a pad of silica gel prior to the fractional
crystallization.
<A NAME="RT00206SS-23">23 </A>
All fractions boiling below 70 °C/0.1 mbar were discarded; fractions boiling at 71-75
°C/0.1 mbar contained mainly (Z )-2 , fractions boiling at 92-96 °C/0.1 mbar provided pure (E )-2 .
<A NAME="RT00206SS-24">24 </A>
Craig D.
Geach NJ.
Pearson CJ.
Slawin AMZ.
White AJP.
Williams DJ.
Tetrahedron
1995,
51:
6071