Synlett 2006(3): 0498-0499  
DOI: 10.1055/s-2006-926262
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

N-Bromosuccinimide - A Selective, Mild Substitute for Bromine

Taraknath Kundu*
Department of Chemistry, Bose Institute, 93/1, A.P.C. Road, ­Kolkata 700 009, India
e-Mail: taraknath_kundu@yahoo.co.uk;
Further Information

Publication History

Publication Date:
06 February 2006 (online)

Introduction

N-Bromosuccinimide (NBS) is commercially available but can also be prepared from succinimide by bromination under alkaline conditions. It is used as a mild source of bromine with higher selectivity, primarily due to its ­property of releasing of bromine in a low, steady-state concentration. [1] It is most widely used for benzylic and ­allylic brominations in the presence of a catalytic amount of a free-radical initiator such as benzoyl peroxide or AIBN in CCl4. [2a] However, benzylic bromination in the absence of any free-radical initiator was recently achieved under microwave irradiation (MWI) in solid phase. [2b] The free-radical condition is also reported to bring about Z- to E-alkene isomerisation. [2c] Cook and co-workers demonstrated the regioselectivity of bromination by NBS under different conditions with indoles. [2a] In many instances, NBS has been used as an activator, for example in stereoselective glycosidation, [3a] protection [3b] and deprotection of ketals [3c] or THP ethers, [3d] and in the synthesis of diindolyl­alkanes. [3e] NBS is also widely used as a mild oxidant [4] as well as for oxidative cyclisations. [5] Recently, NBS was used for the mild, regioselective bromination of ­(hetero)aromatics in ionic liquid, [6a] [b] or for α-bromination of carbonyl compounds in the presence of NaHSO4-SiO2, [6c] or TMSOTf. [6d]

    References

  • 1 March J. Advanced Organic Chemistry   4th ed.:  Wiley; New York: 1992.  p.1495 
  • 2a Zhang P. Liu R. Cook JM. Tetrahedron Lett.  1995,  36:  3103 
  • 2b Goswami S. Dey S. Jana S. Adak AK. Chem. Lett.  2004,  33:  916 
  • 2c Baag M. Kar A. Argade NP. Tetrahedron  2003,  59:  6489 
  • 3a Fukase K. Hasuoka A. Kinoshita I. Aoki Y. Kasumoto S. Tetrahedron  1995,  51:  4923 
  • 3b Karimi B. Hazarkhani H. Maleki J. Synthesis  2005,  279 
  • 3c Iranpoor N. Firouzabadi H. Shaterian HR. Tetrahedron Lett.  2003,  44:  4769 
  • 3d Narender M. Somi Reddy M. Rama Rao K. Synthesis  2004,  1741 
  • 3e Koshima H. Matsusaka W. J. Heterocycl. Chem.  2002,  39:  1089 
  • 4a Surendra K. Krishnaveni NS. Pavan Kumar V. Sridhar R. Rama Rao K. Tetrahedron Lett.  2005,  46:  4581 
  • 4b Somi Reddy M. Narender M. Rama Rao K. Tetrahedron Lett.  2005,  46:  1299 
  • 4c Somoahin KV. Kudryavtsev KV. Tetrahedron Lett.  1994,  35:  7413 
  • 5a Ohno M. Spande TF. Witkop B. J. Am. Chem. Soc.  1968,  90:  6521 
  • 5b Sakurai O. Takashahi M. Ogiku T. Hayashi M. Horikawa H. Iwasaki T. Tetrahedron Lett.  1994,  35:  6317 
  • 5c Monde K. Tamura K. Takasugi M. Kobayashi K. Somei M. Heterocycles  1994,  38:  263 
  • 6a Rajagopal R. Jarikote DV. Lahoti RJ. Daniel T. Srinivasan KV. Tetrahedron Lett.  2003,  44:  1815 
  • 6b Ganguly NC. De P. Dutta S. Synthesis  2005,  1103 
  • 6c Das B. Venkateswarlu K. Mahender G. Mahender I. Tetrahedron Lett.  2005,  46:  3041 
  • 6d Guha SK. Wu B. Kim BS. Baik W. Koo S. Tetrahedron Lett.  2006,  47:  291 
  • 7 Chakrabarty M. Basak R. Harigaya Y. Synthesis  2003,  2011 
  • 8a Tatsugi J. Zhiwei T. Izawa Y. Arkivoc  2001, (i), 67; www.arkat-usa.org
  • 8b Fuchs JR. Funk RL. Org. Lett.  2005,  7:  677 
  • 8c Fuchs JR. Funk RL. J. Am. Chem. Soc.  2004,  126:  5068 
  • 9 Kuang C. Yang Q. Senboku H. Tokuda M. Synthesis  2005,  1319 
  • 10 Talluri SK. Sudalai A. Org. Lett.  2005,  7:  855 
  • 11 Chakrabarty M. Kundu T. Arima S. Harigaya Y. Tetrahedron Lett.  2005,  46:  2865 
  • 12 Sasaki M. Yudin AK. J. Am. Chem. Soc.  2003,  125:  14242