Synlett 2006(2): 263-266  
DOI: 10.1055/s-2006-926227
LETTER
© Georg Thieme Verlag Stuttgart · New York

(S)-Proline as a Neutral and Efficient Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives in Aqueous Media

Saeed Balalaie*, Morteza Bararjanian, Ali Mohammad Amani, Barahman Movassagh
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
Fax: +98(21)22853650; e-Mail: [email protected];
Further Information

Publication History

Received 19 September 2005
Publication Date:
24 January 2006 (online)

Abstract

(S)-Proline has been used as a mild, efficient and neutral catalyst for synthesis of various 4H-benzo[b]pyran derivatives via a one-pot three-component condensation of aromatic aldehydes, ­active methylene compounds, and dimedone in aqueous media. This method offers the advantages of proceeding and neutral and mild conditions, giving high to excellent yields of the products and simple workup.

    References and Notes

  • 1a Anastas PT. Williamson TC. In Green Chemistry, Designing Chemistry for the Environment   Anastas PT. Williamson TC. American Chemical Society; Washington DC: 1996.  p.1 
  • 1b Grieco PA. In Organic Synthesis in Water   Thomson Science; Glasgow: 1998.  p.1 
  • 2 Green GR. Evans JM. Vong AK. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1995.  p.469 
  • 3a Foye WO. Prinicipi di Chemico Farmaceutica   Piccin; Padova, Italy: 1991.  p.416 
  • 3b Andreani LL. Lapi E. Bull. Chim. Farm.  1960,  99:  583 
  • 3c Zhang YL. Chen BZ. Zheng KQ. Xu ML. Lei XH. Yao Xue Xue Bao  1982,  17:  17 ; Chem. Abstr. 1982, 96, 135383e
  • 3d Bonsignore L. Loy G. Secci D. Calignano A. Eur. J. Med. Chem.  1993,  28:  517 
  • 3e Witte EC, Neubert P, and Roesch A. inventors; Ger. Offen DE,  3427985.  1986; Chem. Abstr. 1986, 104, 224915f
  • 4 Konkoy CS, Fick DB, Cai SX, Lan NC, and Keana JFW. inventors; PCT Int. Appl. WO  0075123.  2000; Chem. Abstr. 2001, 134, 29313a
  • 5a Hatakeyama S. Ochi N. Numata H. Takano S. J. Chem. Soc., Chem. Commun.  1988,  1202 
  • 5b Gonzalez R. Martin N. Seoane C. Soto J. J. Chem. Soc., Perkin Trans. 1  1985,  1202 
  • 6 Arnesto D. Horspool WM. Martin N. Ramos A. Seaone C. J. Org. Chem.  1989,  54:  3069 
  • 7 Singh K. Singh J. Singh H. Tetrahedron  1996,  52:  14273 
  • 8 Wang XS. Shi DQ. Tu ST. Yao CS. Synth. Commun.  2003,  33:  119 
  • 9 Tu SJ. Gao Y. Guo C. Shi D. Lu Z. Synth. Commun.  2002,  32:  2137 
  • 10 Li JT. Xu WZ. Yang LC. Li TS. Synth. Commun.  2004,  34:  4565 
  • 11 Kaupp G. Naimi-Jamal MR. Schmeyers J. Tetrahedron  2003,  59:  3753 
  • 12 Jin TS. Wang AQ. Wang X. Zhang JS. Li TS. Synlett  2004,  871 
  • 13 Devi I. Bhuyan PJ. Tetrahedron Lett.  2004,  45:  8625 
  • 14 List B. Tetrahedron  2002,  58:  5573 ; and references cited therein
  • 15a Balalaie S. Hashtroudi MS. Sharifi A. J. Chem. Res., Synop.  1999,  392 
  • 15b Balalaie S. Arabanian A. Hashtroudi MS. Monatsh. Chem.  2000,  131:  945 
  • 15c Balalaie S. Arabanian A. Green Chem.  2000,  2:  274 
  • 15d Balalaie S. Kowsari E. Monatsh. Chem.  2001,  132:  1551 
  • 15e Balalaie S. Kowsari E. Hashtroudi MS. Monatsh. Chem.  2003,  134:  453 
  • 15f Balalaie S. Hashemi MM. Akhbari M. Tetrahedron Lett.  2003,  44:  1709 
  • 15g

    Balalaie, S.; Soleiman-Beigi, M.; Rominger, F. J. Iranian Chem. Soc. in press.

  • 15h

    Balalaie, S.; Bararjanian, M.; Rominger, F. J. Heterocyclic Chem., submitted for publication.

  • 17 List B. Synlett  2001,  1675 
16

General Experimental Procedure: Method A. A solution of an aromatic aldehyde 1 (1 mmol), malono-nitrile (2, 1.2 mmol), 5,5-dimethyl-1,3-cyclohexanedione (3, 1.1 mmol) and (S)-proline (5 mol%) in H2O (20 mL) was stirred at r.t. for 0.5 h (in the case of 4p, the reaction mixture was stirred in refluxing H2O for 2 h). Then, the mixture was cooled in a refrigerator overnight; the solid compound obtained was filtered off and washed with H2O (30 mL). The crude products were purified by recrystallization from EtOH (96%).
General Experimental Procedure: Method B.
A mixture of aromatic aldehyde 1 (1 mmol), alkyl cyano-acetate (2, 1.2 mmol), 5,5-dimethyl-1,3-cyclohexanedione (3, 1.1 mmol) and (S)-proline (5 mol%) in a mixture of H2O (15 mL) and EtOH (15 mL) was stirred at 50 °C for 2 h. After completion of the reaction, the volume of the solution was reduced to half, and H2O (15 mL) was added. Then the mixture was cooled in a refrigerator overnight and the solid compound was collected by filtration. The crude products were recrystallized from EtOH (96%). IR spectra were obtained on a Shimadzu IR-460 and Perkin-Elmer FT-IR Spectrum 1 spectrometer. 1H NMR spectra were run on a Bruker DRX-500 (500 MHz) AVANCE instrument using TMS as internal standard and DMSO-d 6 or CDCl3 as solvent. Data of selected compounds are given below:
Compound 4d: 1H NMR (DMSO-d 6): δ = 0.95 (3 H, s, Me), 1.04 (3 H, s, Me), 2.10 (1 H, d, H-6, J = 16.0 Hz), 2.24 (1 H, d, H-6′, J = 16.0 Hz), 2.51 (2 H, br s, H-8), 4.29 (1 H, s, H-4), 7.16 (2 H, br s, NH2), 7.37 (2 H, d, J = 8.05 Hz, ArH), 7.76 (2 H, d, J = 8.05 Hz, ArH).
Compound 4j: 1H NMR (DMSO-d 6): δ = 0.94 (3 H, s, Me), 1.03 (3 H, s, Me), 2.01 (3 H, s, COMe), 2.08 (1 H, d, J = 16.0 Hz, H-6), 2.24 (1 H, d, J = 16.0 Hz, H-6′), 2.50 (2 H, br s, H-8), 4.11 (1 H, s, H-4), 6.99 (2 H, br s, NH2), 7.04 (2 H, d, J = 8.4 Hz, ArH), 7.45 (2 H, d, J = 8.4 Hz, ArH), 9.87 (1 H, s, NHCO).
Compound 4q: IR (KBr): νmax = 3429, 3313, 1694, 1653 cm-1. 1H NMR (CDCl3): δ = 1.00 (3 H, s, Me), 1.14 (3 H, s, Me), 2.20 (1 H, d, J = 16.0 Hz, H-6), 2.27 (1 H, d, J = 16.0 Hz, H-6′), 2.45 (2 H, br s, H-8), 3.65 (3 H, s, OMe), 4.73 (1 H, s, H-4), 6.20 (2 H, br s, NH2), 7.21 (2 H, d, J = 8.4 Hz, ArH), 7.24 (2 H, d, J = 8.4 Hz, ArH).
Compound 4r: IR (KBr): νmax = 3431, 3315, 1696, 1656, 1532, 1352 cm-1. 1H NMR (CDCl3): δ = 0.98 (3 H, s, Me), 1.12 (3 H, s, Me), 2.16 (1 H, d, J = 16.0 Hz, H-6), 2.26 (1 H, d, J = 16.0 Hz, H-6′), 2.48 (2 H, br s, H-8), 3.64 (3 H, s, OMe), 4.80 (1 H, s, H-4), 6.30 (2 H, br s, NH2), 7.39 (1 H, t, J = 13.0 Hz, ArH), 7.68 (1 H, dt, J = 13.0, 3.2 Hz, ArH), 8.00 (1 H, m, ArH), 8.08 (1 H, t, J = 3.2 Hz, ArH).
Compound 4s: IR (KBr): νmax = 3404, 3291, 1691, 1655 cm-1. 1H NMR (CDCl3): δ = 1.00 (3 H, s, Me), 1.13 (3 H, s, Me), 1.19 (3 H, t, J = 7.08 Hz, Me), 2.20 (1 H, d, J = 16.0 Hz, H-6), 2.26 (1 H, d, J = 16.0 Hz, H-6′), 2.46 (2 H, br s, H-8), 4.06 (2 H, m, OCH2), 4.73 (1 H, s, H-4), 6.22 (2 H, br s, NH2), 7.14 (1 H, t, J = 7.2 Hz, ArH), 7.24 (2 H, t, J = 7.2 Hz, ArH), 7.30 (2 H, d, J = 7.5 Hz, ArH).
Compound 4t: IR (KBr): νmax = 3477, 3317, 1692, 1669 cm-1. 1H NMR (CDCl3): δ = 0.98 (3 H, s, Me), 1.11 (3 H, s, Me), 1.17 (3 H, t, J = 7.1 Hz, Me), 2.17 (1 H, d, J = 16.0 Hz, H-6), 2.27 (1 H, d, J = 16.0 Hz, H-6′), 2.44 (2 H, br s, H-8), 4.05 (2 H, m, OCH2), 4.68 (1 H, s, H-4), 6.20 (2 H, br s, NH2), 7.19 (2 H, d, J = 8.1 Hz, ArH), 7.21 (2 H, d, J = 8.1 Hz, ArH).
Compound 4x: IR (KBr): νmax = 3476, 3338, 1687, 1659 cm-1. 1H NMR (CDCl3): δ = 1.00 (3 H, s, Me), 1.15 (3 H, s, Me), 1.17 (3 H, t, J = 7.1 Hz, Me), 2.20 (1 H, d, J = 16.0 Hz, H-6), 2.28 (1 H, d, J = 16.0 Hz, H-6′), 2.49 (1 H, d, J = 16.0 Hz, H-8), 2.50 (1 H, d, J = 16.0 Hz, H-6′), 4.06 (2 H, m, OCH2), 4.83 (1 H, s, H-4), 6.32 (2 H, br s, NH2), 7.48 (2 H, d, J = 8.8 Hz, ArH), 8.12 (2 H, d, J = 8.8 Hz, ArH).