Abstract
A polymer-supported π-acid (poly-DCKA-1) was found to be a highly efficient and recyclable
catalyst in two- and three-component inverse-electron-demand aza-Diels-Alder reactions
at room temperature not only in water but also under solvent-free conditions.
Key words
polymer - π-acid catalyst - aza-Diels-Alder reaction - aqueous reaction - solvent-free
reaction
References and Notes
<A NAME="RU29305ST-1A">1a</A>
Li C.-J.
Chan T.-H.
Organic Reactions in Aqueous Media
John Wiley & Sons;
New York:
1997.
<A NAME="RU29305ST-1B">1b</A>
Organic Synthesis in Water
Grieco PA.
Blackie Academic and Professional;
London:
1998.
<A NAME="RU29305ST-1C">1c</A>
Lindstrom UM.
Chem. Rev.
2002,
102:
2751
<A NAME="RU29305ST-1D">1d</A>
Li C.-J.
Chem. Rev.
2005,
105:
3095
<A NAME="RU29305ST-2A">2a</A>
Tanaka K.
Toda F.
Chem. Rev.
2000,
100:
1025
<A NAME="RU29305ST-2B">2b</A>
Balema VP.
Wiench JW.
Pruski M.
Pecharsky VK.
J. Am. Chem. Soc.
2002,
124:
6244
For recent reviews, see:
<A NAME="RU29305ST-3A">3a</A>
Shettleworth SJ.
Allin SM.
Sharma PK.
Synthesis
1997,
1217
<A NAME="RU29305ST-3B">3b</A>
Shettleworth SJ.
Allin SM.
Richard RD.
Nasturica N.
Synthesis
2000,
1035
<A NAME="RU29305ST-3C">3c</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer IS.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RU29305ST-3D">3d</A>
Gladysz JA.
Chem. Rev.
2002,
102:
3215
<A NAME="RU29305ST-3E">3e</A>
Bioorg. Med. Chem. Lett.
2002,
12:
1791
<A NAME="RU29305ST-4A">4a</A>
Anastas PT.
Warner JC.
Green Chemistry, Theory and Practice
Oxford Press;
New York:
1998.
<A NAME="RU29305ST-4B">4b</A>
Poliakoff M.
Anastas PT.
Nature (London)
2001,
413:
257
For recent reviews, see:
<A NAME="RU29305ST-5A">5a</A>
de Miguel YR.
Brule E.
Margue RG.
J. Chem. Soc., Perkin Trans. 1
2001,
3085
<A NAME="RU29305ST-5B">5b</A>
van Heerbeek R.
Kamer PCJ.
van Leeuwen PMNM.
Reek JNH.
Chem. Rev.
2002,
102:
3717
<A NAME="RU29305ST-5C">5c</A>
Clapham B.
Reger TS.
Janda KD.
Tetrahedron
2001,
57:
4637
<A NAME="RU29305ST-5D">5d</A>
Benaglia M.
Puglisi A.
Cozzi F.
Chem. Rev.
2003,
103:
3401
<A NAME="RU29305ST-5E">5e</A>
Kobayashi S.
Akiyama R.
Chem. Commun.
2003,
449
<A NAME="RU29305ST-6A">6a</A>
Masaki Y.
Miura T.
Tetrahedron Lett.
1994,
35:
7961
<A NAME="RU29305ST-6B">6b</A>
Masaki Y.
Miura T.
Tetrahedron
1995,
51:
10477
<A NAME="RU29305ST-6C">6c</A>
Miura T.
Masaki Y.
J. Chem. Soc., Perkin Trans. 1
1994,
1659
<A NAME="RU29305ST-6D">6d</A>
Miura T.
Masaki Y.
J. Chem. Soc., Perkin Trans. 1
1995,
215
<A NAME="RU29305ST-6E">6e</A>
Masaki Y.
Miura T.
Synth. Commun.
1995,
25:
1981
<A NAME="RU29305ST-6F">6f</A>
Masaki Y.
Tanaka N.
Miura T.
Chem. Lett.
1997,
55
<A NAME="RU29305ST-7A">7a</A>
Masaki Y.
Tanaka N.
Miura T.
Tetrahedron Lett.
1998,
39:
5799
<A NAME="RU29305ST-7B">7b</A>
Tanaka N.
Miura T.
Masaki Y.
Chem. Pharm. Bull.
2000,
48:
1010
<A NAME="RU29305ST-7C">7c</A>
Tanaka N.
Masaki Y.
Synlett
1999,
1277
<A NAME="RU29305ST-7D">7d</A>
Tanaka N.
Masaki Y.
Synlett
2000,
406
<A NAME="RU29305ST-7E">7e</A>
Tanaka N.
Masaki Y.
Synlett
1999,
1960
<A NAME="RU29305ST-7F">7f</A>
Masaki Y.
Yamada T.
Tanaka N.
Synlett
2001,
1311
<A NAME="RU29305ST-8A">8a</A>
Padwa A.
Progress in Heterocyclic Chemistry
Vol. 7:
Suschitzky H.
Scriven EFV.
Pergamon Press;
Oxford:
1995.
p.21
<A NAME="RU29305ST-8B">8b</A>
Kobayashi S.
Ishitani H.
Nagayama S.
Synthesis
1995,
1195
<A NAME="RU29305ST-8C">8c</A>
Boger DL.
Tetrahedron
1983,
39:
2869
<A NAME="RU29305ST-8D">8d</A>
Weinreb DL.
Staib RR.
Tetrahedron
1982,
38:
3087
<A NAME="RU29305ST-9A">9a</A>
Povarov LS.
Russ. Chem. Rev.
1967,
36:
656
<A NAME="RU29305ST-9B">9b</A>
Yamamoto H.
Lewis Acids in Organic Synthesis
Wiley-VCH;
New York:
2000.
<A NAME="RU29305ST-10A">10a</A>
Yamada N.
Kadowaki S.
Takahashi K.
Umezu K.
Biochem. Pharmacol.
1992,
44:
1211
<A NAME="RU29305ST-10B">10b</A>
Faber K.
Stueckler H.
Kappe T.
Heterocycl. Chem.
1984,
21:
1177
<A NAME="RU29305ST-10C">10c</A>
Johnson JV.
Rauckman S.
Baccanari PD.
Roth B.
J. Med. Chem.
1989,
32:
1942
<A NAME="RU29305ST-10D">10d</A>
Ramesh M.
Moham PS.
Shanmugam P.
Tetrahedron
1984,
40:
4041
<A NAME="RU29305ST-11A">11a</A>
Zigang L.-C.
Li C.-J.
Synlett
2003,
732
<A NAME="RU29305ST-11B">11b</A>
Li Z.
Zhang J.
Li C.-J.
Tetrahedron Lett.
2003,
44:
153
<A NAME="RU29305ST-11C">11c</A>
Zhang J.
Li C.-J.
J. Org. Chem.
2002,
67:
3969
<A NAME="RU29305ST-12">12</A>
Masaki, Y.; Yamazaki, K.; Kawai, H.; Yamada, T.; Itoh, A.; Arai, Y.; Furukawa; H.
Chem. Lett. submitted.
<A NAME="RU29305ST-13">13</A>
Middleton WJ.
Engelhardt VA.
J. Am. Chem. Soc.
1958,
80:
2788
<A NAME="RU29305ST-14">14</A>
Danishefsky S.
Acc. Chem. Res.
1981,
14:
400
<A NAME="RU29305ST-15">15</A>
Middleton WJ.
Heckert RE.
Little EL.
Krespan CG.
J. Am. Chem. Soc.
1958,
80:
2783
<A NAME="RU29305ST-16">16</A> The 9a(syn)/9b(anti) ratio was determined by 1H NMR analysis based on the following publication:
Ma Y.
Qian C.
Xie M.
Sun J.
J. Org. Chem.
1999,
64:
6462
<A NAME="RU29305ST-17">17</A>
Typical Procedure To a mixture of benzylideneaniline (453 mg, 2.5 mmol) and poly-DCKA-1 (189 mg, 0.5
mmol equiv) in H2O (5.0 mL), was added 3,4-dihydro-4H-pyran (1.26 g, 15 mmol) at r.t., and the mixture was stirred for 24 h. EtOAc was
added, the poly-DCKA-1 was removed by filtration, and the filtrate was extracted with
EtOAc. The organic layer was washed with H2O, dried over anhyd MgSO4, and concen-trated in vacuo to give the crude product, which was purified by column
chromatography on silica gel (hexane-EtOAc) to give pure diastereoisomers 9a (404 mg, 60%) and 9b (64 mg, 11%).
<A NAME="RU29305ST-18">18</A>
The catalyst poly-DCKA-1 was recovered by filtration from the reaction mixture followed
by washing successively with H2O and EtOAc, and drying in vacuo at r.t. for 4 h.