Synlett 2006(2): 324-326  
DOI: 10.1055/s-2005-923580
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Carbocyclic Pyrimidine Nucleosides Using the Mitsunobu ­Reaction - Part II: [1] Influence of the Solvent on N1- versus O2-Alkylation

Olaf R. Ludek, Chris Meier*
Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
Fax: +49(40)428382495; e-Mail: chris.meier@chemie.uni-hamburg.de;
Further Information

Publication History

Received 11 October 2005
Publication Date:
23 December 2005 (online)

Abstract

The influence of the solvent on N- vs O-alkylation of N3-benzoylthymine under Mitsunobu conditions is described. The Mitsunobu reaction is an important tool in carbocyclic nucleoside chemistry for the direct coupling of alcohols with heterocyclic bases under mild conditions.

    References and Notes

  • 1 Ludek OR. Meier C. Synlett  2005,  3145 
  • 2 Marquez VE. In Advances in Antiviral Drug Design   Vol. 2:  De Clercq E. JAI Press; Greenwich: 1996.  p.89-146  
  • 3 Agrofoglio LA. Challand SR. Acyclic, Carbocyclic and l-Nucleosides   Kluwer Academic Publishers; Dordrecht, Boston, London: 1998. 
  • 4 Vince R. Hua M. J. Med. Chem.  1990,  33:  17 
  • 5 Daluge SM. Martin MT. Sickles BR. Livingston DA. Nucleosides, Nucleotides Nucleic Acids  2000,  19:  297 
  • 6 Bisacchi GS. Chao ST. Bachard C. Daris JP. Innaimo S. Jacobs GA. Kocy O. Lapointe P. Martel A. Merchant Z. Slusarchyk WA. Sundeen JE. Young MG. Colonno R. Zahler R. Bioorg. Med. Chem. Lett.  1997,  7:  127 
  • 7a Balzarini J. Baumgartner H. Bodenteich M. De Clercq E. Griengl H. Nucleosides Nucleotides  1989,  8:  855 
  • 7b Wyatt PG. Anslow AS. Coomber BA. Cousins RPC. Evans DN. Gilbert VS. Humber DC. Paternoster IL. Sollis SL. Tapolczay DJ. Weingarten GG. Nucleosides Nucleotides  1995,  14:  2039 
  • 8a Borthwick AD. Biggadike K. Tetrahedron  1992,  48:  571 
  • 8b Agrofoglio L. Suhas E. Farese A. Condom R. Challand SR. Earl RA. Guedj R. Tetrahedron  1994,  50:  10611 
  • 8c Crimmins MT. Tetrahedron  1998,  54:  9229 
  • 9a Jenny TF. Previsani N. Benner SA. Tetrahedron Lett.  1991,  32:  7029 
  • 9b Jenny TF. Horlacher J. Previsani N. Benner SA. Helv. Chim. Acta  1992,  75:  1944 
  • 9c Bonnal C. Chavis C. Lucas M. J. Chem. Soc., Perkin Trans. 1  1994,  1401 
  • 9d Pérez-Pérez MJ. Rozenski J. Busson R. Herdewijn P. J. Org. Chem.  1995,  60:  1531 
  • 9e Borthwick AD. Crame AJ. Exall AM. Weingarten GG. Mahmoudian M. Tetrahedron Lett.  1995,  36:  6929 
  • 9f Schmitt L. Caperelli CA. Nucleosides Nucleotides  1997,  16:  2165 
  • 9g Choo H. Chong Y. Chu CK. Org. Lett.  2001,  3:  1471 
  • 10a Ludek OR. Meier C. Synthesis  2003,  13:  2101 
  • 10b Ludek OR. Balzarini J. Meier C. Eur. J. Org. Chem.  2005,  in press 
  • 11 Cruickshank KA. Jiricny J. Reese CB. Tetrahedron Lett.  1984,  25:  681 
  • 13 Reichardt C. Solvents and Solvent Effects in Organic Chemistry   2nd Ed.:  VCH-Verlagsgesellschaft GmbH; Weinheim: 1988. 
12

Typical Procedure: DIAD (545 µL, 2.80 mmol) was slowly added to a suspension of PPh3 (787 mg, 3.00 mmol) in anhyd solvent (11 mL). The mixture was stirred for 0.5 h at 0 °C. This pre-formed complex was slowly added to a suspension of the N3-Bz-thymine (506 mg, 2.2 mmol) and cyclopentanol (90 µL, 1.00 mmol) in anhyd solvent (6.0 mL) at -40 °C under nitrogen. The reaction was slowly warmed to r.t. and stirred overnight. The solvent was removed from the reaction mixture and a solution of NaOH in MeOH (1%, 15 mL) was added and stirred overnight at r.t. The solution was neutralized by the addition of HCl (1 M) and then concentrated. The crude was purified by chromatography on silica gel (hexanes-EtOAc, 1:2) to yield the N1-alkylated product 2 [R f 0.26 (hexanes-EtOAc, 1:2)] and the O 2-isomer 3 [R f 0.35 (hexanes-EtOAc, 1:2)] as colorless solids. Both isomers were isolated and the product ratio was determined from integration of the H-1′ protons in the 1H NMR spectra.
Cyclopentylthymine 2. IR (KBr): 3173, 3039, 2956, 2874, 1692, 1474, 1415, 1369, 1368, 1317, 1270, 1121, 921, 585, 425 cm-1. 1H NMR (400 MHz, DMSO-d 6 ): δ = 11.20 (br s, 1 H, NH), 7.56 (q, 1 H, J = 1.2 Hz, H-6), 4.80-4.72 (m, 1 H, H-1′), 2.00-1.90 (m, 2 H, H-2′a, H-5′a), 1.82 (d, 3 H, J = 1.2 Hz, H-7), 1.80-1.55 (m, 6 H, H-2′b, H-5′b, 3′-CH2, 4′-CH2). 13C NMR (101 MHz, DMSO-d 6 ): δ = 164.23 (C-4), 152.34 (C-2), 137.45 (C-6), 111.25 (C-5), 56.05 (C-1′), 32.87 (C-2′, C5′), 25.29 (C-3′, C-4′), 12.84 (C-7). HRMS-FAB: m/z calcd for C10H14N2O2 (M + H): 195.1134; found: 195.1131.
2- O -Cyclopentylthymine 3. IR (KBr): 2960, 1650, 1581, 1498, 1380, 1327, 1163, 1042, 955, 917, 773, 750, 587 cm-1. 1H NMR (400 MHz, DMSO-d 6 ): δ = 12.10 (br s, 1 H, NH), 7.60 (q, 1 H, J = 1.0 Hz, H-6), 5.38-5.30 (m, 1 H, H-1′), 2.00-1.90 (m, 2 H, H-2′a, H-5′a), 1.88 (d, 3 H, J = 1.0 Hz, H-7), 1.80-1.55 (m, 6 H, H-2′b, H-5′b, 3′-CH2, 4′-CH2). 13C NMR (101 MHz, DMSO-d 6 ): δ = 164.23 (C-4), 157.13 (C-2), 151.37 (C-6), 118.36 (C-5), 80.09 (C-1′), 33.72 (C-2′, C5′), 24.91 (C-3′, C-4"), 12.92 (C-7). HRMS-FAB: m/z calcd for C10H14N2O2 (M + H): 195.1134; found: 195.1128.