Dtsch Med Wochenschr 2005; 130(50): 2904-2909
DOI: 10.1055/s-2005-923325
© Georg Thieme Verlag Stuttgart · New York

Oxidativer Stress und kardiovaskuläre Erkrankungen

Oxidative stress and cardiovascular diseasesE. Bassenge1 , H. T. Schneider2 , A. Daiber3
  • 1Institut für Angewandte Physiologie, Albert-Ludwigs Universität, Freiburg
  • 2Medizinische Fakultät, Universität Bonn, Bonn
  • 3II. Medizinische Klinik, Johannes Gutenberg-Universität, Mainz
Further Information

Publication History

eingereicht: 28.6.2005

akzeptiert: 20.10.2005

Publication Date:
12 December 2005 (online)


Für eine Vielzahl von kadiovaskulären Erkrankungen konnte nachgewiesen werden, dass die Bildung von Radikalen (oxidativer Stress) zur Pathogense bzw. Progression dieser Prozesse beiträgt. Beispiele hierfür sind Hypercholesterolämie und Atherosklerose sowie Hypertonie, Diabetes und verschiedene durch Ischämie-Reperfusionsschäden bedingte Herzerkrankungen. Im Besonderen wird auf Superoxid eingegangen, da ihm eine zentrale Rolle bei der Modulation des peripheren Gefäßwiderstandes zukommt, indem es den stets wirksamen endogengebildeten Vasodilatator Stickstoffmonoxid (NO) abfängt, zum stark oxidativen Peroxynitrit umwandelt und damit eine endotheliale Dysfunktion auslösen kann. Hier soll eine Übersicht über die zugrunde liegenden Mechanismen des erhöhten oxidativen Stresses gegeben sowie aufgezeigt werden, über welche antioxidativen Komponenten die verschiedenen Pharmaka in das Redoxgleichgewicht eingreifen und so als zusätzlichen protektiven Effekt den oxidativen Stress absenken können. Im Besonderen wird auf unterschiedlich wirksame organische Nitrate eingegangen und diskutiert, wie diese einerseits oxidativen Stress und dadurch eine Nitrattoleranz induzieren und andererseits diesen Prozessen sogar entgegenwirken.


A number of diseases like hypercholesterolemia and atherosclerosis, hypertension, congestive heart failure, diabetes, ischemia-reperfusion, neurodegenerative diseases as well as acute and chronic inflammatory diseases are characterized by an increased steady-state concentration of reactive oxygen species (ROS). On a biomolecular level an enhanced oxidative stress causes damage of proteins, lipids and nucleic acids. Both the experimental and therapeutic efficiency of different antioxidative compounds (like various antioxidative enzymes) , drugs, metabolites and vitamins for the maintenance of an appropriate intracellular redox potential underline the importance of an excessive ROS-formation for these diseases. Control of excessive ROS-formation can be obtained by angiotensin converting enzyme (ACE-) inhibitors, by AT1-receptor blockers, by statins and other lipid lowering compounds, by improved expression of antioxidative enzymes (superoxide dismutase, catalase etc.), by compounds such as probucol, certain vitamins, pyruvate, by lipid apheresis and by physical exercise training, which displays surprising efficacy.


  • 1 Asselbergs F W, van der Harst P, Jessurun G A, Tio R A, van Gilst W H. Clinical impact of vasomotor function assessment and the role of ACE-inhibitors and statins.  Vascul Pharmacol. 2005;  42 125-140
  • 2 Bassenge E, Fink B, Schwemmer M. Oxidative stress, vascular dysfunction and heart failure.  Heart Fail Rev. 1999;  4 133-145
  • 3 Boger R H. Asymetrisches Dimethylarginin (ADMA) als kardiovaskulärer Risikofaktor. Epidemiologische und prospektive Daten.  Dtsch Med Wochenschr. 2004;  129 820-824
  • 4 Brush J E, Faxon D P, Salmon S, Jacobs A K, Ryan T J. Abnormal endothelium-dependent coronary vasomotion in hypertensive patients.  J Am Coll Cardiol. 1992;  19 809-815
  • 5 Cosentino F, Patton S, d’Uscio L V. et al . Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats.  J Clin Invest. 1998;  101 1530-1537
  • 6 Dimmeler S, Aicher A, Vasa M. et al . HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway.  J Clin Invest. 2001;  108 391-397
  • 7 Fink B, Schwemmer M, Fink N, Bassenge E. Tolerance to nitrates with enhanced radical formation suppressed by carvedilol.  J Cardiovasc Pharmacol. 1999;  34 800-805
  • 8 Fonarow G C. An approach to heart failure and diabetes mellitus.  Am J Cardiol. 2005;  96 47E-52E
  • 9 Fridovich I. The biology of oxygen radicals.  Science. 1978;  201 875-880
  • 10 Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.  Nature. 1980;  288 373-376
  • 11 Fuster V, Dyken M L, Vokonas P S, Hennekens C. Aspirin as a therapeutic agent in cardiovascular disease. Special Writing Group.  Circulation. 1993;  87 659-675
  • 12 Gordon J B, Ganz P, Nabel E G. et al . Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise.  J Clin Invest. 1989;  83 1946-1952
  • 13 Gori T, Burstein J M, Ahmed S. et al . Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance: a human in vivo study.  Circulation. 2001;  104 1119-1123
  • 14 Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers.  Circulation. 1996;  94 6-9
  • 15 Jurt U, Gori T, Ravandi A, Babaei S, Zeman P, Parker J D. Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation: a human in vivo study.  J Am Coll Cardiol. 2001;  38 854-859
  • 16 Kaesemeyer W H, Caldwell R B, Huang J, Caldwell R W. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions.  J Am Coll Cardiol. 1999;  33 234-241
  • 17 Keimer R, Stutzer F K, Tsikas D, Troost R, Gutzki F M, Frolich J C. Lack of oxidative stress during sustained therapy with isosorbide dinitrate and pentaerythrityl tetranitrate in healthy humans: a randomized, double-blind crossover study.  J Cardiovasc Pharmacol. 2003;  41 284-292
  • 18 Kuroedov A, Cosentino F, Luscher T F. Pharmacological mechanisms of clinically favorable properties of a selective beta1-adrenoceptor antagonist, nebivolol.  Cardiovasc Drug Rev. 2004;  22 155-168
  • 19 Laufs U, La Fata V, Plutzky J, Liao J K. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors.  Circulation. 1998;  97 1129-1135
  • 20 McFadden E P, Clarke J G, Davies G J, Kaski J C, Haider A W, Maseri A. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina.  N Engl J Med. 1991;  324 648-654
  • 21 McNally J S, Davis M E, Giddens D P. et al . Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress.  Am J Physiol Heart Circ Physiol. 2003;  285 H2290-2297
  • 22 Minor R L, Myers P R, Guerra R, Bates J N, Harrison D G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.  J Clin Invest. 1990;  86 2109-2116
  • 23 Mollnau H, Schulz E, Daiber A. et al . Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells.  Arterioscler Thromb Vasc Biol. 2003;  23 615-621
  • 24 Morrow J D, Frei B, Longmire A W. et al . Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage.  N Engl J Med. 1995;  332 1198-11 203
  • 25 Munzel T, Sayegh H, Freeman B A, Tarpey M M, Harrison D G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance.  J Clin Invest. 1995;  95 187-194
  • 26 Oberle S, Abate A, Grosser N. et al . Endothelial protection by pentaerithrityl trinitrate: bilirubin and carbon monoxide as possible mediators.  Exp Biol Med (Maywood). 2003;  228 529-534
  • 27 Schachinger V, Zeiher A M. Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis.  Circulation. 1995;  92 2087-2094
  • 28 Schwartz G G, Olsson A G, Ezekowitz M D. et al . Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial.  Jama. 2001;  285 1711-1718
  • 29 Taylor A L, Ziesche S, Yancy C. et al . Combination of isosorbide dinitrate and hydralazine in blacks with heart failure.  N Engl J Med. 2004;  351 2049-2057
  • 30 Ting H H, Timimi F K, Boles K S, Creager S J, Ganz P, Creager M A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus.  J Clin Invest. 1996;  97 22-28
  • 31 Zeiher A M, Krause T, Schachinger V, Minners J, Moser E. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia.  Circulation. 1995;  91 2345-2352
  • 32 Zeiher A M, Schachlinger V, Hohnloser S H, Saurbier B, Just H. Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis.  Circulation. 1994;  89 2525-2532

Prof. Dr. E. Bassenge

Albert-Ludwigs Universität, Institut für Angewandte Physiologie

Hermann-Herder-Straße 9

79104 Freiburg

Phone: 07633 6590

Fax: 07633 6590

Email: angphys@ruf.uni-freiburg.de