References and Notes
<A NAME="RY07405ST-1A">1a</A>
Horner L.
Hoffman H.
Wippel HG.
Klahre G.
Chem. Ber.
1959,
92:
2499
<A NAME="RY07405ST-1B">1b</A>
Wadsworth WS.
Emmons WD.
J. Am. Chem. Soc.
1961,
83:
1733
For a book and reviews:
<A NAME="RY07405ST-2A">2a</A>
Wadsworth DH.
Org. React.
1977,
25:
73
<A NAME="RY07405ST-2B">2b</A>
Boutagy J.
Thomas R.
Chem. Rev.
1974,
74:
87
<A NAME="RY07405ST-2C">2c</A>
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
<A NAME="RY07405ST-2D">2d</A>
Nicolaou KC.
Harter MW.
Gunzner JL.
Nadin A.
Liebigs Ann./Recl.
1997,
1283
<A NAME="RY07405ST-2E">2e</A>
Motoyoshiya J.
Trends Org. Chem.
1998,
7:
63
<A NAME="RY07405ST-2F">2f</A>
Thirsk C.
Whiting A.
J. Chem. Soc., Perkin Trans. 1
2002,
999
<A NAME="RY07405ST-3">3</A>
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
<A NAME="RY07405ST-4A">4a</A>
Ando K.
Tetrahedron Lett.
1995,
36:
4105
<A NAME="RY07405ST-4B">4b</A>
Ando K.
J. Org. Chem.
1997,
62:
1934
<A NAME="RY07405ST-4C">4c</A>
Ando K.
J. Org. Chem.
1998,
63:
8411
<A NAME="RY07405ST-4D">4d</A>
Ando K.
J. Org. Chem.
1999,
64:
6815
<A NAME="RY07405ST-4E">4e</A>
Ando K.
Oishi T.
Hirama M.
Ohno H.
Ibuta T.
J. Org. Chem.
2000,
65:
4745
<A NAME="RY07405ST-4F">4f</A>
Ando K.
Synlett
2001,
1272
<A NAME="RY07405ST-5A">5a</A>
Sano S.
Yokoyama K.
Fukushima M.
Yagi T.
Nagao Y.
Chem. Commun.
1997,
559
<A NAME="RY07405ST-5B">5b</A>
Sano S.
Teranishi R.
Nagao Y.
Tetrahedron Lett.
2002,
43:
9183
<A NAME="RY07405ST-5C">5c</A>
Sano S.
Saito K.
Nagao Y.
Tetrahedron Lett.
2003,
44:
3987
<A NAME="RY07405ST-6A">6a</A>
Mukaiyama T.
Banno K.
Narasaka K.
Chem. Lett.
1973,
1011
<A NAME="RY07405ST-6B">6b</A>
Mukaiyama T.
Banno K.
Narasaka K.
J. Am. Chem. Soc.
1974,
96:
7503
<A NAME="RY07405ST-6C">6c</A>
Mukaiyama T.
Organic Reactions
Vol. 28:
Wiley;
New York:
1982.
p.203
<A NAME="RY07405ST-7A">7a</A>
Evans DA.
Clark JS.
Metternich R.
Novack VJ.
Sheppard GS.
J. Am. Chem. Soc.
1990,
112:
866
<A NAME="RY07405ST-7B">7b</A>
Evans DA.
Urpi F.
Somers TC.
Clark JS.
Bilodeau MT.
J. Am. Chem. Soc.
1990,
113:
8215
<A NAME="RY07405ST-7C">7c</A>
Evans DA.
Rieger DL.
Bilodeau MT.
Urpi F.
J. Am. Chem. Soc.
1991,
112:
1047
<A NAME="RY07405ST-7D">7d</A>
Crimmins MT.
King BW.
Tabet EA.
Chaudhary K.
J. Org. Chem.
2001,
66:
894
<A NAME="RY07405ST-8A">8a</A>
Tanabe Y.
Bull. Chem. Soc. Jpn.
1988,
62:
1917
<A NAME="RY07405ST-8B">8b</A>
Misaki T.
Nagase R.
Matsumoto K.
Tanabe Y.
J. Am. Chem. Soc.
2005,
127:
2854 ; and other references cited therein
<A NAME="RY07405ST-9A">9a</A>
Tanabe Y.
Matsumoto N.
Higashi T.
Misaki T.
Itoh T.
Nishii Y.
Tetrahedron
2002,
58:
8269
<A NAME="RY07405ST-9B">9b</A>
Tanabe Y.
Matsumoto N.
Funakoshi S.
Manta N.
Synlett
2001,
1959
<A NAME="RY07405ST-9C">9c</A>
Tanabe Y.
Mitarai K.
Higashi T.
Misaki T.
Nishii Y.
Chem. Commun.
2002,
2542
<A NAME="RY07405ST-10">10</A>
Typical Procedure (Table 2, Entry 1).
TiCl4 (neat, 132 µL, 1.20 mmol) and Et3N (142 mg, 1.40 mmol) in CH2Cl2 (0.5 mL) were successively added to a stirred solution of (EtO)2P(O)CH2CO2Et (1; 224 mg, 1.00 mmol) in CH2Cl2 (3.5 mL) at -20 °C under an Ar atmosphere. After 15 min, i-PrCHO (110 µL, 1.20 mmol) was added and the reaction mixture was stirred for 2 h.
Then, H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated to give the desired product 2a (281 mg, 95%). 1H NMR (300 MHz, CDCl3): δ = 0.91 (syn, 3 H, d, J = 6.5 Hz), 0.93 (anti, 3 H, d, J = 6.9 Hz), 1.02 (anti, 3 H, d, J = 6.9 Hz), 1.08 (syn, 3 H, d, J = 6.5 Hz), 1.27-1.38 (9 H, m), 1.72-1.88 (1 H, m), 3.20 (syn, 1 H, dd, J = 9.3, 20.6 Hz), 3.27 (anti, 1 H, dd, J = 3.8, 23.4 Hz), 3.80-3.87 (1 H, m), 4.08-4.30 (6 H, m). 13C NMR (75 MHz, CDCl3): δ = 13.99, 16.27, 17.99, 19.39, 32.71, 32.85, 48.45 [d, 1J (13C, 31P) = 132.9 Hz], 62.50 [d, 2J (13C, 31P) = 7.2 Hz], 63.18 [d, 2J (13C, 31P) = 7.2 Hz], 74.75 [d, 2J (13C, 31P) = 4.3 Hz], 163.68 [d, 2J (13C, 31P) = 4.3 Hz].
<A NAME="RY07405ST-11">11</A>
Among several attempts of O-acetylation procedures, use of Ac2O (2.0 equiv)-cat. Ph2N+H2·OTf- (0.1 equiv) in toluene at r.t. resulted in nearly quantitative conversion yields.
Ethyl 3-acetoxy-2-(diethylphosphono)-2,4-dimethyl-pentanoate (from 2b): 1H NMR (300 MHz, CDCl3): δ = 0.88 (3 H, d, J = 6.9 Hz), 1.04 (3 H, d, J = 6.9 Hz), 1.22-1.39 (9 H, m), 2.02 (anti, 3 H, s), 2.22 (syn, 3 H, s), 4.07-4.27 (6 H, m), 5.51 (anti, 1 H, dd, J = 2.8, 6.5 Hz), 5.69 (syn, 1 H, dd, J = 1.4, 9.63 Hz).
<A NAME="RY07405ST-12">12</A>
Misaki T.
Kurihara M.
Tanabe Y.
Chem. Commun.
2001,
2478
<A NAME="RY07405ST-13">13</A>
General Procedure.
BSA (367 µL, 1.50 mmol) was added to a stirred solution of 2 and PyH+·OTf - (46 mg, 0.2 mmol) in THF (2.0 mL) at 20-25 °C under an Ar atmosphere. After 0.5 h,
H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated. The obtained crude oil was purified by SiO2 column chromatography (hexane-EtOAc, 1:1) to give the desired product.
Ethyl 2-(diethylphosphono)-4-methyl-3-(trimethyl-siloxy)pentanoate (3a): 1H NMR (300 MHz, CDCl3): δ = 0.09 (anti, 9 H, s), 0.18 (syn, 9 H, s), 0.85 (syn, 3 H, d, J = 6.5 Hz), 0.86 (anti, 3 H, d, J = 6.9 Hz), 0.95 (syn, 3 H, d, J = 6.4 Hz), 0.96 (anti, 3 H, d, J = 6.9 Hz), 1.28-1.36 (9 H, m), 2.03-2.13 (1 H, m), 3.26 (syn, 1 H, dd, J = 9.3, 19.9 Hz) 3.29 (anti, 1 H, dd, J = 10.0, 19.6 Hz), 3.99-4.33 (7 H, m).
13C NMR (75 MHz, CDCl3): δ = 0.38, 13.96, 14.15, 16.18, 16.27, 21.01, 30.86, 52.26 [d, 1J (13C, 31P) = 127.2 Hz], 61.19, 62.51 [d, 2J (13C, 31P) = 5.8 Hz], 62.58 [d, 2J (13C, 31P) = 5.8 Hz], 75.95 [d, 2J (13C, 31P) = 2.9 Hz], 168.62 [d, 2J (13C, 31P) = 7.2 Hz]. IR (neat): 3405, 2976, 1252, 1024, 968, 843 cm-1.
Seyden-Penne’s group extensively studied HWE reaction using RMgCl as a base to produce
the aldol adduct. However, there are no experimental details and some trials in our
hands failed to obtain the desired products.
<A NAME="RY07405ST-14A">14a</A>
Lefébvre G.
Seyden-Penne J.
J. Chem. Soc., Chem. Commun.
1970,
1308
<A NAME="RY07405ST-14B">14b</A>
Bottin-Strzalko T.
Seyden-Penne J.
Tetrahedron Lett.
1972,
1945
<A NAME="RY07405ST-14C">14c</A>
Kyriakakou G.
Roux-Schmitt MC.
Seyden-Penne J.
Tetrahedron
1975,
31:
1883
<A NAME="RY07405ST-15">15</A>
Acetonide derivative of 2a was prepared as follows: benzyl ester analogue 1′ was used for the present Ti-addition, and the successive debenzylation (H2-cat. Pd/C) and acetonide formation (2,2-dimethoxy propane-cat. PPTS, Scheme
[3]
). 1H NMR (300 MHz, CDCl3): δ = 0.90 (3 H, d, J = 6.9 Hz), 1.04 (3 H, d, J = 6.9 Hz), 1.31-1.39 (6 H, m), 1.55 (3 H, s), 1.71 (3 H, s), 1.95-2.11 (1 H, m),
3.13 (1 H, dd, J = 8.9, 27.9 Hz), 4.12-4.36 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 13.94, 16.19, 19.66, 23.98, 28.97, 31.34, 43.09 [d, 1J (13C, 31P) = 131.5 Hz], 62.82 [d, 2J (13C, 31P) = 7.2 Hz], 63.89 [d, 2J (13C, 31P) = 7.2 Hz], 72.11, 106.03, 163.68 [d, 2J (13C, 31P) = 5.8 Hz].
<A NAME="RY07405ST-16">16</A>
Typical Procedure (Table 4, Entry 2).
TBS-BEZA (467mg, 1.50 mmol) was added to a stirred solution of the obtained aldol
adduct (2c) and -PyH+·OTf- (23 mg, 0.1 mmol) in THF (2.0 mL) at 20-25 °C under an Ar atmosphere. After 0.5 h,
H2O was added to the mixture, which was extracted twice with Et2O. The combined organic phase was washed with H2O, brine, dried (Na2SO4) and concentrated. The obtained crude oil was purified by SiO2 column chromatography (hexane-EtOAc = 20:1) to give the desired product (146 mg,
86%).
<A NAME="RY07405ST-17">17</A>
The reaction of Table
[4]
, entry 1 resulted in the formation of TBSOP(O)(OEt)2 (10) in 93% yield based on 1H NMR measurement, which matched with the authentic sample prepared from HOP(O)(OEt)2 and TBSCl in the presence of imidazole in MeCN. 1H NMR (300 MHz, CDCl3): δ = 0.27 (6 H, s), 0.95 (9 H, s), 1.30-1.35 (6 H, m), 4.05-4.13 (4 H, m).