References and Notes
<A NAME="RG31905ST-1A">1a</A> Using stoichiometric or near-stoichiometric amounts of titanium tartrate:
Katsuki T.
Sharpless KB.
J. Am. Chem. Soc.
1980,
102:
5976
Using molecular sieves and <10 mol% of titanium tartrate:
<A NAME="RG31905ST-1B">1b</A>
Hanson RM.
Sharpless KB.
J. Org. Chem.
1986,
51:
1922
<A NAME="RG31905ST-1C">1c</A>
Gao Y.
Hanson RM.
Klunder JM.
Ko SY.
Masamune H.
Sharpless KB.
J. Am. Chem. Soc.
1987,
109:
5765
Sharpless oxidations:
<A NAME="RG31905ST-2A">2a</A>
Pfenniger A.
Synthesis
1986,
89
<A NAME="RG31905ST-2B">2b</A>
Johnson RA.
Sharpless KB. In Catalytic Asymmetric Synthesis
Ojima I.
VCH;
New York:
1993.
p.103
<A NAME="RG31905ST-2C">2c</A>
Katsuki T.
Martín VS.
Org. React.
1996,
48:
1
<A NAME="RG31905ST-2D">2d</A>
Johnson RA.
Sharpless KB. In Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
p.231-286
Tansformations of Sharpless epoxides:
<A NAME="RG31905ST-2E">2e</A>
Hanson RM.
Chem. Rev.
1991,
91:
47
<A NAME="RG31905ST-2F">2f</A>
Pena PCA.
Roberts SM.
Curr. Org. Chem.
2003,
7:
555
<A NAME="RG31905ST-3A">3a</A>
Hatakeyama S.
Sakurai K.
Takano S.
J. Chem. Soc., Chem. Commun.
1985,
1759
<A NAME="RG31905ST-3B">3b</A>
Häfele B.
Schröter D.
Jäger V.
Angew. Chem., Int. Ed. Engl.
1986,
25:
87 ; Angew. Chem. 1986, 98, 89
<A NAME="RG31905ST-3C">3c</A>
Schreiber SL.
Schreiber TS.
Smith DB.
J. Am. Chem. Soc.
1987,
109:
1525
<A NAME="RG31905ST-3D">3d</A>
Smith DB.
Wang Z.
Schreiber SL.
Tetrahedron
1990,
46:
4793
<A NAME="RG31905ST-3E">3e</A>
Nakatsuka M.
Ragan JA.
Sammakia T.
Smith DB.
Uehling DE.
Schreiber SL.
J. Am. Chem. Soc.
1990,
112:
5583
<A NAME="RG31905ST-3F">3f</A>
Jäger V.
Hümmer W.
Stahl U.
Gracza T.
Synthesis
1991,
769
<A NAME="RG31905ST-4">4</A> According to ref. 3c, overoxidation of the monoepoxide increases its ee because
the minor epoxide enantiomer is more reactive than the major enantiomer. A more general
analysis of the stereochemistry of consecutive asymmetric functionalizations of compounds
with two identical prochiral sites led to a complementary conclusion: unless a fast
and a slow reacting enantiomer emerge from the first functionalization, the ee does
not change during the second functionalization:
Rautenstrauch R.
Bull. Soc. Chim. Fr.
1994,
131:
515
<A NAME="RG31905ST-5A">5a</A>
Hatakeyama S.
Sakurai K.
Numata H.
Ochi N.
Takano S.
J. Am. Chem. Soc.
1988,
110:
5201
<A NAME="RG31905ST-5B">5b</A>
Schreiber SL.
Schreiber TS.
Smith DB.
J. Am. Chem. Soc.
1987,
109:
1525
<A NAME="RG31905ST-6A">6a</A>
Herunsalee A.
Isobe M.
Pikul S.
Goto T.
Synlett
1991,
199
<A NAME="RG31905ST-6B">6b</A>
Hatakeyama S.
Satoh K.
Takano S.
Tetrahedron Lett.
1993,
34:
7425
<A NAME="RG31905ST-6C">6c</A>
Esumi T.
Fukuyama H.
Oribe R.
Kawazoe K.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1997,
38:
4823
<A NAME="RG31905ST-6D">6d</A>
Nishioka T.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1998,
39:
5597
<A NAME="RG31905ST-6E">6e</A>
Masaki H.
Maeyama J.
Kamada K.
Esumi T.
Iwabuchi Y.
Hatakeyama S.
J. Am. Chem. Soc.
2000,
122:
5216
<A NAME="RG31905ST-6F">6f</A>
Bayer A.
Svendsen JS.
Eur. J. Org. Chem.
2001,
1769
<A NAME="RG31905ST-7">7</A>
Berkenbusch T.
Brückner R.
Synlett
2003,
1813
<A NAME="RG31905ST-8">8</A>
Spivey AC.
Woodhead SJ.
Weston M.
Andrews BI.
Angew. Chem. Int. Ed.
2001,
40:
769
<A NAME="RG31905ST-9">9</A>
The diastereomeric compositions of monoepoxidation product 1a were determined by comparing the integrals over the following 1H NMR signals (300 MHz, CDCl3): δ = 2.99 [dd, J
3,4 = 7.5 Hz, J
3,2 = 4.3 Hz, 3-H (anti-1a
[7]
)] vs. δ = 3.07 [dd, J
3,4 = 7.4 Hz, J
3,2 = 4.5 Hz, 3-H (syn-1a)]. ‘ds >98:2’ means that the mentioned 1H NMR signal of the minor diastereomer could not be detected.
<A NAME="RG31905ST-10">10</A>
All new compounds gave satisfactory 1H NMR and 13C NMR spectra and provided correct combustion analyses (C and H ± 0.4%).
<A NAME="RG31905ST-11">11</A>
The ee of monoepoxidation product syn-1a was determined by HPLC. Column: Chiralpak AD; eluent: n-heptane-
i-PrOH 90:10; flow rate: 1.0 mL/min; UV detector: 238 nm; t
R = 48.2 min for syn-1a; t
R = 53.4 min for ent-syn-1a.
<A NAME="RG31905ST-12">12</A>
Synthesis of cis
-(2
R
,3
S
,4
R
)-2,3-Epoxy-1,7-bis[(4-methoxybenzyl)oxy]-5-hepten-4-ol (
syn
-1a).
At -20 °C, l-(+)-DiPT (51 µL, 57 mg, 0.24 mmol, 1.1 equiv) and t-BuOOH (4.43 M in CH2Cl2, 100 µL, 0.44 mmol, 2.0 equiv) were added to a suspension of Zr(Oi-Pr)4·i-PrOH (84 mg, 0.22 mmol, 1.0 equiv) and 4 Å MS (140 mg, powdered) in CH2Cl2 (4.5 mL). The mixture was stirred for 1 h at
-20 °C before a solution of divinylcarbinol 2a (85 mg, 0.22 mmol) in CH2Cl2 (2.0 ml) was added slowly. After stirring at -20 °C for 4 h, the reaction was quenched
at -20 °C with a solution (1.0 mL) prepared from NaOH (30 g), NaCl (5 g), and H2O (90 mL). The cooling bath was removed and the mixture stirred for 2 h at r.t. t-BuOMe (10 mL) was followed by Na2SO4 for drying. After filtration through a pad of Celite® excess t-BuOOH was removed by azeotropic distillation with toluene (2 × 5 mL). The residue
was purified by flash chromatography
[20]
(cyclohexane-EtOAc, 5:2) to afford syn-1a (56 mg, 63%) in the early fractions and a 68:32-mixture of syn,syn-5/syn-1a [33 mg, composed of 10 mg syn-1a (11%) and 23 mg syn,syn-5 (25%)] thereafter, both samples being colorless liquids. The total yield of syn-1a was 74% and its ee value 82.0% (by HPLC
[11]
). Sample of 98.3% ee from the time resolved experiment (Figure
[1]
; 16 h, 44% yield): [α]D
20 -8.7 (c 0.8, CHCl3), [α]365
20 -33.1 (c 0.8, CHCl3). 1H NMR (499.9 MHz, CDCl3/TMS): δ = 2.67 (br s, OH), 3.07 (dd, J
3,4 = 7.4 Hz, J
3,2 = 4.5 Hz, 3-H), 3.25 (ddd, J
2,1-H
(
A) = 6.5 Hz, J
2,3 = J
2,1-H
(
B) = 4.2 Hz, 2-H), AB signal (δA = 3.50, δB = 3.65, J
AB = 11.4 Hz, in addition split by J
A,2 = 6.6 Hz, J
B,2 = 3.7 Hz, 1-H2), 3.79 (s, 2 × OCH3), AB signal (δA = 4.02, δB = 4.06, J
AB = 12.8 Hz, in addition split by J
A,6 = 5.9 Hz, 4
J
A,5 = 1.2 Hz, J
B,6 = 6.2 Hz, 4
J
B,5 = 1.5 Hz, 7-H2), 4.27 (br dd, J
4,5 = J
4,3 = 7.8 Hz, 4-H), 4.39-4.51 (m, 2 × Ar-CH
2), AB signal (δA = 5.66, δB = 5.78, J
AB = 11.3 Hz, in addition split by J
A,4 = 8.2 Hz, J
B,7-H
(
A) = J
B,7-H
(
B) = 5.9 Hz, A: 5-H, B: 6-H), AA′BB′ signal centered at δ = 6.87 and δ = 7.24 (2 × C6H4). 13C NMR (125.7 MHz, CDCl3/CDCl3): δ = 55.33 (2 × OCH3), 56.00 (C-2), 58.93 (C-3), 65.83 (C-7), 66.79 (C-4), 67.79 (C-1), 72.41 and 73.02
(2 × benzylic CH2), 113.92 and 113.96 (2 × C
meta
), 129.52 and 129.56 (2 × C
ortho
), 129.78 (2 × C
ipso
), 130.24 (C-5), 130.38 (C-6), 159.43 and 159.44 (2 × C
para
). Anal. Calcd (%) for C23H28O6 (400.5): C, 68.98; H, 7.05. Found: C, 69.16; H, 7.16.
<A NAME="RG31905ST-13">13</A>
The diastereomeric composition of monoepoxidation product 1b was determined by comparing the integrals over the following 1H NMR signals (300 MHz, CDCl3): δ = 3.02 [dd, J
3,4 = 7.5 Hz, J
3,2 = 4.1 Hz, 3-H (anti-1b
[7]
)] vs. δ = 3.07 [dd, J
3,4 = 7.4 Hz, J
3,2 = 4.5 Hz, 3-H (syn-1b)]. ‘ds >98:2’ means that the mentioned 1H NMR signal of the minor diastereomer could not be detected.
<A NAME="RG31905ST-14">14</A>
The ee of monoepoxidation product syn-1b was determined by HPLC. Column: Chiralpak OD-H; eluent: n-heptane-
i-PrOH 200:1; flow rate: 1.0 mL/min; UV detector: 210 nm; t
R = 24.5 min for syn-1b; t
R = 27.8 min for ent-syn-1b.
<A NAME="RG31905ST-15">15</A>
Analytical Data for cis
,
cis
-2,3-5,6-Bisepoxy-1,7-bis[4-methoxybenzyl)oxy]-4-heptanol (
syn
,
syn
-5).
Colorless solid (mp 90-91 °C). 1H NMR (499.9 MHz, CDCl3/TMS): δ = 2.53 (br d, J
OH,4 = 5.4 Hz, OH), 3.13 (dd, J
3,4 or J
5,4 = 6.0 Hz, respectively, J
3,2 or J
5,6 = 4.5 Hz, respectively, 3-H, 5-H), 3.27 (ddd, J
2,1-H
(
A) or J
6,7-H
(
A) = 5.5 Hz, respectively, J
2,3 = J
2,1-H
(
B) or J
6,5 = J
6,7-H
(
B) = 4.6 Hz, respectively, 2-H, 6-H), 3.63-3.72 (m, 1-H2, 4-H, 7-H2), 3.79 (s, 2 × OCH3), AB signal (δA = 4.42, δB = 4.50, J
AB = 11.4 Hz, 2 × Ar-CH
2), AA′BB′ signal centered at δ = 6.87 und 7.24 (2 × C6H4). 13C NMR (125.7 MHz, CDCl3/CDCl3): δ = 55.33 (C-2, C-6), 55.60 (2 × OCH3), 56.98 (C-3, C-5), 66.74 (C-4), 67.54 (C-1, C-7), 73.12 (2 × benzylic CH2), 113.96 (2 × C
meta
), 129.57 (2 × C
ortho
), 129.64 (2 × C
ipso
), 159.48 (2 × C
para
). Anal. Calcd (%) for C23H28O7 (416.5): C, 66.33; H, 6.78. Found: C, 66.14; H, 6.83.
<A NAME="RG31905ST-16">16</A>
This study was effected starting with 1.56 mmol 2a in 48 mL CH2Cl2. After the indicated times, 8 mL aliquots were removed from the reaction mixture
and worked up extractively as described in ref. 12. After assessing the yields of
the constituents of the crude product
[17]
the latter was flash-chromatographed
[20]
for obtaining pure samples of syn-1a for ee determination.
[11]
<A NAME="RG31905ST-17">17</A>
The overall weights of the crude products and their 1H NMR spectra allowed determining the yields of the constituents syn-1a, 2a, and 5 of these mixtures.
<A NAME="RG31905ST-18">18</A>
This experiment was performed before we learnt to prepare epoxy alcohol syn-1a as enantioselectively as documented in Table
[1]
and Figure
[1]
.
Method:
<A NAME="RG31905ST-19A">19a</A>
Hatakeyama S.
Satoh K.
Takano S.
Tetrahedron Lett.
1993,
34:
7425
<A NAME="RG31905ST-19B">19b</A>
Esumi T.
Fukuyama H.
Oribe R.
Kawazoe K.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1997,
38:
4823
<A NAME="RG31905ST-19C">19c</A>
Nishioka T.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1998,
39:
5597
<A NAME="RG31905ST-20">20</A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RG31905ST-21">21</A>
Analytical Data for (2
S
,4
R
)-1-[4-Methoxybenzyl)oxy]-6-heptene-2,4-diol [(2
S
,4
R
)-7].
Colorless liquid. [α]D
20 = -7.7 (c 0.92, CHCl3) when prepared from anti-
6 the ee of which was 96.8% (by HPLC). 1H NMR (499.9 MHz, CDCl3/TMS): AB signal (δA = 1.55, δB = 1.63, J
AB = 14.4 Hz, in addition split by J
A,4 = 8.9 Hz*, J
A,2 = 3.5 Hz*, J
B,2 = 8.5 Hz**, J
B,4 = 2.8 Hz**, 3-H2), δ = 2.20-2.31 (m, 5-H2), 2.54 and 2.79 (2 × br s, 2 × OH), AB signal (δA = 3.38, δB = 3.47, J
AB = 9.5 Hz, in addition split by J
A,2 = 7.7 Hz, J
B,2 = 3.7 Hz, 1-H2), 3.80 (s, OCH3), 3.92-3.98 (m, 4-H), 4.12 (mC, 2-H), 4.49 (s, Ar-CH
2), 5.09-5.14 (m, 7-H2), 5.82 (dddd, J
6,7-H
(
Z
) = 16.3 Hz, J
6,7-H
(
E
) = 11.0 Hz, J
6,5-H
(
A) = J
6,5-H
(
B) = 7.2 Hz, 6-H), AA′BB′ signal centered at δ = 6.88 and 7.25 (C6H4); *,** assignments interchangeable. 13C NMR (125.7 MHz, CDCl3/CDCl3): δ = 38.78 (C-3), 42.20 (C-5), 55.35 (OCH3), 67.93 and 67.99 (C-2 and C-4), 73.09 (benzylic CH2), 74.19 (C-1), 113.95 (C
meta
), 118.05 (C-7), 129.48 (C
ortho
), 130.05 (C
ips
), 134.77 (C-6), 159.42 (C
para
). Anal. Calcd (%) for C15H22O4 (266.3): C, 67.64; H, 8.33. Found: C, 67.41; H, 8.52.
<A NAME="RG31905ST-22">22</A>
The ee of monoepoxidation products anti-6/ent-anti-6 was determined by HPLC. Column: Chiralpak AD; eluent: n-heptane-i-PrOH 85:15; flow rate: 1.0 mL/min; UV detector: 227 nm; t
R = 58.1 min for anti-6; t
R = 52.7 min for ent-anti-6.
<A NAME="RG31905ST-23">23</A>
The diastereomeric composition of monoepoxidation products 6/ent-6 was determined by comparing the integrals over the following 1H NMR signals (300 MHz, CDCl3): δ = 2.99 [dd, J
3,4 = 4.6 Hz, J
3,2 = 2.3 Hz, 3-H (syn-6)] vs. 3.02 [dd, J
3,4 = J
3,2 = 2.7 Hz, 3-H (anti-6)] and δ = 3.19 [ddd, J
2,1-H
(
A) = 5.4 Hz, J
2,1-H
(
B) = J
2,3 = 2.7 Hz, 2-H (syn-6)] vs. 3.25 [ddd, J
2,1-H
(
A) = 5.3 Hz, J
2,1-H
(
B) = J
2,3 = 2.7 Hz, 2-H (anti-6)].
<A NAME="RG31905ST-24">24</A>
The ee of monoepoxidation products syn-6/ent-syn-6 were determined by HPLC. Column: Chiralpak AD-H; eluent: n-heptane-i-PrOH 80:20; flow rate: 1.0 mL/min; UV detector: 227 nm; t
R = 28.6 min for syn-6; t
R = 26.4 min for ent-syn-6.
Epoxy alcohol openings at C3:
<A NAME="RG31905ST-25A">25a</A> Using DIBAL-H:
Finan JM.
Kishi Y.
Tetrahedron Lett.
1982,
23:
2719
<A NAME="RG31905ST-25B">25b</A> Using LiBH4/Ti(Oi-Pr)4:
Dai L.-X.
Lou B.
Zhang Y.
Guo G.
Tetrahedron Lett.
1986,
27:
4343
<A NAME="RG31905ST-26">26</A>
This can be inferred from the coupling constants causing the hyperfine structure of
the 4-H resonance in the 500 MHz 1H NMR spectrum in CDCl3: 4-H of the major product 9 is a ddd at δ = 4.68 with 3 vicinal H-C-C-H couplings
(J
4,3-H
(
A) = J
4,3-H
(
B) = J
4,5 = ca. 6.4 Hz); in contrast, 4-H of the minor product 10 is a ddd at δ = 4.19 with 2 vicinal
H-C-C-H couplings (J
4,5 = 8.5 Hz, J
4,3 = 6.5 Hz) and an additional long-range coupling 4
J
4,6 = 1.0 Hz.