Synlett 2006(1): 0045-0048  
DOI: 10.1055/s-2005-922762
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel Approach to the Synthesis of N-Substituted 1-C-Aminomethyl Glycofuranosides

Yolanda Vera-Ayosoa, Pastora Borracheroa, Francisca Cabrera-Escribano*a, Manuel Gómez-Guilléna, Pierre Vogelb
a Departamento de Química Orgánica ‘Profesor García González’, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 553, 41071 Sevilla, Spain
Fax: +34(95)4624960; e-Mail: fcabrera@us.es;
b Laboratoire de Glycochimie et Synthèse Asymétrique, Swiss Federal Institute of Technology (EPFL), BCH-EPFL, 1015 Lausanne, Switzerland
Further Information

Publication History

Received 18 October 2005
Publication Date:
16 December 2005 (online)

Abstract

Reductive amination of formyl C-glycofuranosides, easily available from hexose-derived equatorial-2-OH-glycopyranosides by DAST-promoted ring contraction, afforded N-substituted 1-C-aminomethyl glycofuranosides in most cases in high yields.

    References and Notes

  • 1a Fischer C. Lipata F. Rohr J. J. Am. Chem. Soc.  2003,  125:  7818 
  • 1b Faizi S. Ali H. Planta Med.  1999,  65:  383 
  • 2a Gremyachinskiy DE. Samoshin VV. Gross PH. Tetrahedron Lett.  2003,  44:  6587 
  • 2b Bhat AS. Gervay-Hague J. Org. Lett.  2001,  3:  2081 
  • 2c BeMiller JN. Gilson RJ. Myers RW. Santoro MM. Yadav MP. Carbohydr. Res.  1993,  250:  93 
  • 2d Lai W. Martin OR. Carbohydr. Res.  1993,  250:  185 
  • 2e Maity SK. Dutta SK. Banerjee AK. Achari B. Singh M. Tetrahedron  1994,  50:  6965 
  • For 2-(aminomethyl)pyrrolidine-3,4-diol derivatives, see:
  • 2f Saotome C. Wong C.-H. Kanie O. Chem. Biol.  2001,  8:  1061 
  • 2g Popowycz F. Gerber-Lemaire S. Schütz C. Vogel P. Helv. Chim. Acta  2004,  87:  800 
  • 2h Fiaux H. Popowycz F. Favre S. Schütz C. Vogel P. Gerber-Lemaire S. Juillerat-Jeanneret L. J. Med. Chem.  2005,  48:  4237 
  • 2i Popowycz F. Gerber-Lemaire S. Rodriguez-García E. Schütz C. Vogel P. Helv. Chim. Acta  2003,  86:  1914 
  • 3a Gruner SAW. Locardi E. Lohof E. Kessler H. Chem. Rev.  2002,  102:  491 
  • 3b Durrat F. Xie J. Valéry J.-M. Tetrahedron Lett.  2004,  45:  1477 
  • For recent reviews see:
  • 4a Chakraborty TK. Srinivasu P. Tapadar S. Mohan BK. Glycoconjugate J.  2005,  22:  83 
  • 4b Chakraborty TK. Srinivasu P. Tapadar S. Mohan B. J. Chem. Sci.  2004,  116:  187 
  • See also:
  • 4c Prasad S. Mathur A. Jaggi M. Sharma R. Gupta N. Reddy VR. Sudhakar G. Kumar SU. Kumar SK. Kunwar AC. Chakraborty TK. J. Pept. Res.  2005,  66:  75 
  • 4d Chakraborty TK. Jayaprakash S. Diwan PV. Nagaraj R. Jampani SRB. Kunwar AC. J. Am. Chem. Soc.  1998,  120:  12962 
  • 4e Chakraborty TK. Ghosh S. Jayaprakash S. Sarma JARP. Ravikanth V. Diwan PV. Nagaraj R. Kunwar AC. J. Org. Chem.  2000,  65:  6441 
  • 5 Patrick GL. An Introduction to Medicinal Chemistry   2nd ed.:  Oxford University Press; Oxford: 2002.  p.446 
  • 6a Broadley KJ. Kelly DR. Molecules  2001,  6:  142 
  • 6b Liu J.-K. Chem. Rev.  2005,  105:  2723 
  • 7a Locardi E. Stöke M. Gruner S. Kessler H. J. Am. Chem. Soc.  2001,  123:  8189 
  • 7b Graf von Roedern E. Kessler H. Angew. Chem., Int. Ed. Engl.  1994,  33:  687 
  • 7c Graf von Roedern E. Kessler H. Angew. Chem., Int. Ed. Engl.  1994,  33:  684 
  • 8 Benksim A. Beaupère D. Wadouahi A. Org. Lett.  2004,  6:  3913 
  • 9 Mantell SJ. Fleet GWJ. Brown D. J. Chem. Soc., Perkin Trans. 1  1992,  3023 
  • 10a Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Carmona AT. Gómez-Guillén M. Tetrahedron: Asymmetry  2004,  15:  429 
  • 10b Borrachero P. Cabrera-Escribano F. Carmona AT. Gómez-Guillén M. Tetrahedron: Asymmetry  2000,  11:  2927 
  • 10c Borrachero-Moya P. Cabrera-Escribano F. Gómez-Guillén M. Madrid-Díaz F. Tetrahedron Lett.  1997,  38:  1231 
  • 11 Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Gómez-Guillén M. Tetrahedron: Asymmetry  2005,  16:  889 
  • 15 Popowycz F. Gerber-Lemarie S. Demange R. Rodriguez-García E. Asenjo ATC. Robina I. Vogel P. Bioorg. Med. Chem. Lett.  2001,  11:  2489 
12

General Procedure for the One-Pot Preparation of Compounds 7. Compound 6 (100 mg, 0.315 mmol) was dissolved in a 9:1 TFA-H2O mixture (2.7 mL) and the solution was kept at r.t. for 1 h. The reaction mixture was poured into ice-water (100 mL) and extracted with CH2Cl2 (4 × 20 mL). The combined organic layers were successively washed with sat. aq NaHCO3 and brine, then dried (Na2SO4), and concentrated. The residue (crude aldehyde) was dissolved in 1,2-dicloroethane (3.1 mL) and treated with the amine (0.437 mmol) and sodium triacetoxyborohydride (93.0 mg, 0.441 mmol). The reaction was stirred at r.t. for the appropriate time (Table [1] ). The mixture was then diluted with sat. aq NaHCO3 (25 mL) and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were dried (Na2SO4), and concentrated under reduced pressure to give the crude product, which was purified by column chromatography using EtOAc-hexane, Et2O-hexane or Et2O-acetone as eluent.
Compound 7a: R f = 0.37 (5:1 Et2O-acetone); [α]D 26 +19.3 (c 0.56, CH2Cl2). IR: νmax = 3324 (NH), 2106 (N3), 1746 (CO), 1231 and 1119 (CO) cm-1. 1H NMR (300 MHz, acetone-d 6): δ = 7.25-7.08 (m, 5 H, Ph), 5.31 (dd, 1 H, J 4,5 = 7.8 Hz, J 3,4 = 5.1 Hz, H-4), 4.48 (dd, 1 H, J 2,3 = 3.9 Hz, H-3), 4.32 (ddd, 1 H, J 1,2 = J 1 ′,2 = 6.6 Hz, H-2), 4.23 (dd, 1 H, J 6,6 = 10.8 Hz, J 5,6 = 2.4 Hz, H-6), 4.07-3.95 (m, 2 H, H-5 and H-6¢), 3.83 (d, 1 H, J H,H = 13.5 Hz, CH a Ph), 3.78 (d, 1 H, J H,H = 13.8 Hz, CH b Ph), 2.82 (d, 2 H, H-1 and H-1¢), 2.11 and 2.02 (each 2 s, 3 H, 2 COMe) ppm. 13C NMR (75.4 MHz, acetone-d 6): δ = 170.8, 170.7 (2 CO), 141.8-127.5 (Ph), 80.0 (C-2), 78.1 (C-5), 75.8 (C-4), 64.6 (C-6), 64.4 (C-3), 54.4 (CH2Ph), 49.4 (C-1), 20.7 and 20.4 (2 COMe) ppm. HRMS (CI): m/z calcd for C17H22N4O5 + H: 363.1668; found 363.1671.

13

General Procedure for Deacetylation of 7 and Preparation of Compounds 8. The corresponding reductive amination product 7 (0.070 mmol) was dissolved in: (i) (2 mL of 1:1 MeOH-CHCl3), (ii) (2 mL of MeOH), or (iii) (2 mL of EtOH abs.), and 5 drops of 1 M MeONa-MeOH were added to the solution [for the deprotection of 7g was used EtONa-EtOH abs. (1 M)]. The reaction mixture was kept at r.t. for 2 h. Work-up was done by one of the following procedures.
Procedure 1 (8b-d,f): the reaction mixture was cooled and 600 µL TFA was added. The residue was purified by a Dowex 50 × 8 W column, using MeOH (50 mL), H2O (50 mL) and NH4OH (10% aq soln; 100 mL) as eluents.
Procedure 2 (8a,e,g,h): the reaction mixture was neutralized with Amberlyst 15, the resin was removed by filtration and the solvent under reduced pressure.

14

In comparison with the NMR spectra of each direct precursor, each acetylated compound 7a-h lacked any signal of aldehyde proton and carbon, but showed instead the signals corresponding to the two new diastereotopic protons at C(1). For the compounds obtained from some primary amines (7e,f-h), the amine proton gave rise to the typical broad signal in the 1H NMR spectrum at δ = 4.41 (7e), 4.44-4.38 (7f), 5.81 (7g), and 6.00 ppm (7h), values that can be correlated with the electron-withdrawing or electron-donating character of the substituent at the para position of the aromatic group. However, the amine proton signal of 7a was not observed, probably because it is overlapped. The molecular weight found for 9 in its HRMS agreed with the aldimine structure assigned, while its NMR spectra showed the sp ² (C)H signal at δ = 6.86 ppm and the imine carbon at δ = 134.1 ppm, thus corroborating the assignation. For the deacetylated compounds 8a-h, their respective calculated molecular weights were in agreement with those found by HRMS. Furthermore, the 1H NMR and 13C NMR spectra of these compounds showed no signal corresponding to the O-acetyl groups present in the precursors 7a-h, as expected.

16

Compound 15 was obtained from 12 (100 mg, 0.265 mmol) and diamine 14 (78 mg, 0.287 mmol) in the presence of NaBH(OAc)3 (60.2 mg, 0.287 mmol) by a similar one-pot procedure to that described above for the preparation of compounds 7 from 6.
More relevant data of 15: R f = 0.45 (Et2O); [α]D 24 +14.6 (c 0.63, acetone). IR: νmax = 3295 (NH), 1692 (CO), 1370 (NCO), 1157, 1059 (COC), and 991 (CF) cm-1. 1H NMR (500 MHz, DMSO-d 6, 363 K): δ = 7.41-7.25 (m, 5 H, Ph), 5.27 (dt, 1 H, 2 J 4,F = 54.9 Hz, J 3,4 = J 4,5 = 3.0 Hz, H-4), 4.79, 4.63 (2 d, 1 H each, J H,H = 11.5 Hz, CH 2 Ph), 4.69 (dd, 1 H, J 4 ′,3 = J 4 ′,5 ′b = 5.7 Hz, H-4¢), 4.62 (d, 1 H, H-3¢), 4.55 (s, 2 H, CH 2 Ph), 4.38 (dddd, 1 H, 3J5,F = 30.5 Hz, J 5,6a = J 5,6b = 6.0 Hz, H-5), 4.33-4.21 (m, 2 H, H-2 and H-2¢), 4.17 (dt, 1 H, 3 J 3,F = 23.5 Hz, J 2,3 = 8.5 Hz, H-3), 3.75 (dd, 1 H, J 6a,6b = 10.2 Hz, H-6a), 3.75 (d, 1 H, J 5 ′a,5 ′b = 14.0 Hz, H-5¢a), 3.60 (ddd, 1 H, 4 J 6b,F = 1.8 Hz, H-6b), 3.32 (dd, 1 H, H-5¢b), 3.20-2.91 (m, 4 H, H-1a, H-1b, H-6¢a, H-6¢b), 1.41 (s, 9 H, CMe 3 ), 1.34 and 1.25 (each 2 s, 3 H, CMe 2 ) ppm. 13C NMR (125.7 MHz, DMSO-d 6, 363 K): δ = 152 (CO), 137.7-126.8 (Ph), 110.6 (CMe2), 89.1 (d, 1 J 4,F = 188.2 Hz, C-4), 81.6 (C-3¢), 80.1 (d, 2 J 3,F = 16.2 Hz, C-3), 79.5 (C-4¢), 78.4 (d, 2 J 5,F = 17.1 Hz, C-5), 78.3 (CMe3), 74.7 (C-2), 72.2 and 71.2 (CH2Ph), 67.0 (d, 3 J 6,F = 11.6 Hz, C-6), 59.8 (C-2¢), 50.4 (C-5¢), 49.0, 46.6 (C-1, C-6¢), 27.6 (CMe 3 ), 26.3 and 26.2 (CMe 2 ). HRMS (CI): m/z calcd for C33H45N2O7F + H: 601.3289; found: 601.3281.