Synlett 2005(20): 3116-3120  
DOI: 10.1055/s-2005-922754
LETTER
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic NCN-Pincer Palladium Complexes: A Source for General, Highly Efficient Catalysts in Heck, Suzuki, and Sonogashira Coupling Reactions

Fátima Churruca, Raul SanMartin*, Imanol Tellitu, Esther Domínguez*
Kimika Organikoa II Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, P.O. Box 644, 48080 Bilbao, Spain
Fax: +34(94)6012748; e-Mail: qopsafar@lg.ehu.es;
Further Information

Publication History

Received 6 October 2005
Publication Date:
28 November 2005 (online)

Abstract

Readily available NCN-pincer palladium complexes comprising two pyrazole units as the source of both N-donor atoms are successfully employed as catalysts in a range of C-C bond-forming reactions. Good to excellent results are obtained in all cases regardless of the electronic nature of the substrates, along with more convenient procedures and comparatively much lower catalysts loadings in Suzuki and Sonogashira couplings. This paper presents the first report of a Sonogashira coupling reaction by means of a NCN catalyst.

    References

  • 1 For a review, see: Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  De Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • See, for example:
  • 2a DeVasher RB. Moore LR. Shaughnessy KH. J. Org. Chem.  2004,  69:  7919 
  • 2b Braunstein P. J. Organomet. Chem.  2004,  689:  3953 
  • 2c Van de Weghe P. Lett. Org. Chem.  2005,  2:  113 
  • 3a Hernández S. SanMartin R. Tellitu I. Domínguez E. Org. Lett.  2003,  5:  1095 
  • 3b Churruca F. SanMartin R. Tellitu I. Domínguez E. Eur. J. Org. Chem.  2005,  2481 
  • For a review on the use of pincer complexes, see:
  • 4a Singleton JT. Tetrahedron  2003,  59:  1837 
  • 4b See also: Beletskaya IP. Cheprakov AV. J. Organomet. Chem.  2004,  689:  4055 
  • The synthesis and properties of several NCN-pincer palladium complexes have been described in:
  • 4c Rietveld MHP. Grove DM. van Koten G. New J. Chem.  1997,  21:  751 
  • 4d Dijkstra HP. Slagt MQ. McDonald A. Kruithof CA. Kreiter R. Mills AM. Lutz M. Spek AL. Klopper W. van Klink GPM. van Koten G. Eur. J. Inorg. Chem.  2003,  830 
  • 4e Slagt MQ. van Zwieten DAP. Moerkerk AJCM. Gebbink RJMK. van Koten G. Coord. Chem. Rev.  2004,  248:  2275 
  • 4f Takenaka K. Minakawa M. Uozomi Y. J. Am. Chem. Soc.  2005,  127:  12273 
  • There is discussion about the real role of pincer complexes in palladium-catalyzed reactions, as their decomposition to generate Pd(0) in several Heck reaction conditions is well documented. See, for example:
  • 4g Sommer WJ. Yu K. Sears JS. Ji Y. Zheng X. Davis RJ. Sherill CD. Jones CW. Weck M. Organometallics  2005,  24:  4351 
  • 4h Olsson D. Nilsson P. El Masnaouy M. Wendt OF. Dalton Trans.  2005,  1924 
  • 4i Bergbreiter DE. Osburn PL. Frels JD. Adv. Synth. Catal.  2005,  347:  172 
  • 5a Najera C. Gil-Moltó J. Karlström S. Falvello LR. Org. Lett.  2003,  5:  1451 
  • 5b Iyer S. Jayanthi A. Synlett  2003,  1125 
  • 5c Wang A.-E. Xie J.-H. Wang L.-X. Zhou Q.-L. Tetrahedron  2005,  61:  259 
  • 6a CNC: Loch JA. Albrecht M. Peris E. Mata J. Faller J. Crabtree RH. Organometallics  2002,  21:  700 
  • 6b PCP: Lee HM. Zeng JY. Hu C.-H. Lee M.-T. Inorg. Chem.  2004,  43:  6822 
  • 6c SCS: Zim D. Grubber AS. Ebeling G. Dupont J. Monteiro AL. Org. Lett.  2000,  2:  2881 
  • The application of such NCN-palladacycles in Heck coupling is restricted to the following reports:
  • 7a Magill AM. McGuiness DS. Cavell KJ. Britovsek GJP. Gibson VC. White AJP. Williams DJ. White AM. J. Organomet. Chem.  2001,  617-618:  546 
  • 7b Díez-Barra E. Guerra J. Hornillos V. Merino S. Tejeda J. Organometallics  2003,  22:  4610 
  • 7c Jung IG. Son SU. Park KH. Chung K.-C. Lee JW. Chung YK. Organometallics  2003,  22:  4715 
  • 7d We found only two reports that use the above-mentioned heterocyclic NCN-pincers in the Suzuki reaction: Gupta AK. Rim CY. Oh CH. Synlett  2004,  2227 ; see also ref. 7a
  • 8 Hartshorn CM. Steel PJ. Organometallics  1998,  17:  3487 . In our case, overall yield of complexes 2a-b starting from commercially available 1,3-bis(bromomethyl)-1-methylbenzoate (3) was 90-95%
  • 9 Abe T, Matsunaga H, Mihira A, Sato C, Ushirogochi H, Sato K, Takasaki T, Venkatesan AM, and Mansour TS. inventors; U.S. Patent  US2004132708.  ; Chem. Abstr. 2004, 141, 106320
  • 10 Liu P. Chen Y. Deng J. Tu Y. Synthesis  2001,  2078 
  • The range of assays performed was based on the following reports, basically replacing the employed catalysts by palladacycles 2, see:
  • 13a Alo BI. Kandil A. Patil PA. Sharp MJ. Siddiqui MA. Snieckus V. Josephy PD. J. Org. Chem.  1991,  56:  3763 
  • 13b Müller W. Lowe DA. Neijt H. Urwyler S. Herrling PL. Blaser D. Seebach D. Helv. Chim. Acta  1992,  75:  855 
  • 13c Coleman RS. Grant EB. Tetrahedron Lett.  1993,  34:  2225 
  • 13d Shieh W.-C. Carlson JA. J. Org. Chem.  1992,  57:  379 
  • 13e Wallow TI. Novak BM. J. Org. Chem.  1994,  59:  5034 
  • 13f Marck G. Villiger A. Buchecker R. Tetrahedron Lett.  1994,  35:  3277 
  • 13g Watanabe T. Miyaura N. Suzuki A. Synlett  1992,  207 
  • 13h Kelly TR. García A. Lang F. Walsh JJ. Bhaskar KV. Boyd MR. Götz R. Keller PA. Walter R. Bringmann G. Tetrahedron Lett.  1994,  35:  7621 
  • 14 Similar reaction conditions employing a silica-supported tetradentate NHC catalyst were performed by: Zhao Y. Zhou Y. Ma D. Liu J. Li L. Zhang TY. Zhang H. Org. Biomol. Chem.  2003,  1:  1643 
  • NCN-, PCP-, CNC-, and NCP-pincer complexes have been used as catalysts in Suzuki coupling reactions, TON values varying from 20 to 177500, see:
  • 16a Bedford RB. Draper SM. Scully PN. Welch SL. New J. Chem.  2000,  24:  745 
  • 16b Steel PG. Teasdale CWT. Tetrahedron Lett.  2004,  45:  8977 
  • 16c Rosa GR. Ebeling G. Dupont J. Monteiro AL. Synthesis  2003,  2894 
  • 16d Vicente J. Abad J.-A. López-Serrano J. Jones PG. Nájera C. Botella-Segura L. Organometallics  2005,  24:  5044 ; see also ref. 6a, 6b, 7a, and 7d
  • To the best of our knowledge, three examples of Sonogashira coupling reactions catalyzed by palladium pincer complexes have been reported so far, exhibiting TON values of 20-100, see:
  • 19a Eberhard MR. Wang Z. Jensen CM. Chem. Commun.  2002,  818 
  • 19b Mas-Marzá E. Segarra AM. Claver C. Perisb E. Fernández E. Tetrahedron Lett.  2003,  44:  6595 ; see also ref. 6a
11

2a: white powder, mp >300 °C (EtOAc). FTIR (neat film): 1714, 1592, 1510, 1412 cm-1. 1H NMR (500 MHz, DMSO): δ = 3.83 (3 H, s, CH3), 5.55 (4 H, s, CH2), 6.46 (2 H, dd, J = 2.0, 1.6 Hz, H-4′), 7.70 (2 H, s, H2, H-6), 7.92 (2 H, d, J = 1.6 Hz, H-5′), 8.14 (2 H, d, J = 2.1 Hz, H-3′). 13C NMR (63 MHz, DMSO): δ = 52.1 (CH3), 56.7 (CH2), 106.6 (C-4′), 125.9 (C-2, C-6), 126.4 (C-1), 133.1 (C-5′), 137.2 (C-3, C-5), 143.2 (C-3′), 150.7 (C-4), 166.2 (CO). Anal. calcd for C16H15ClN4O2Pd: C, 43.96; H, 3.46; N, 12.82. Found: C, 43.93; H, 3.48; N, 12.83.
2b: white powder, mp >300 °C (EtOAc). FTIR (neat film): 1702, 1590, 1549, 1425 cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.34 (6 H, s, C5′-CH3), 2.61 (6 H, s, C3′-CH3), 3.87 (3 H, s, COOCH3), 4.95 (2 H, d, J 14.1 Hz, CHaHb), 5.66 (2 H, d, J = 14.1 Hz, CHaHb), 5.82 (2 H, s, H-4′), 7.58 (2H, s, H-2, H-6). 13C NMR (63 MHz, CDCl3): δ = 11.7 (C-5′CH3), 15.5 (C-3′CH3), 52.0 (COOCH3), 54.1 (CH2), 107.1 (C-4′), 125.5 (C-2, C-6), 126.3 (C-1), 137.3 (C-3, C-5), 140.4 (C-5′), 152.5 (C-3′), 154.6 (C-4), 166.8 (CO). Anal. calcd for C20H23ClN4O2Pd: C, 48.70; H, 4.70; N, 11.36. Found: C, 48.74; H, 4.67; N, 11.35.

12

General procedure: A dry 5-mL round-bottom flask was charged with aryl bromide (1 mmol), alkene (1.5 mmol), catalyst 2 (0.001 mmol Pd), and anhyd DMF (1 mL). The mixture was stirred at 140 °C under argon for 18 h. After cooling, H2O (10 mL) was added, and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried over anhyd Na2SO4 and evaporated in vacuo. The residue was dissolved in CDCl3 and analyzed by 1H NMR and 13C NMR spectroscopy [bis(ethylene glycol) dimethyl ether as an internal standard]; the identity of every product was confirmed by comparison with spectroscopic data in the literature.

15

General procedure: A 5-mL round-bottom flask was charged with ArBr (1 mmol), ArB(OH)2 (1.5 mmol), catalyst 2 (0.001 mmol Pd), K2CO3 (2 mmol), and H2O (1 mL). The mixture was stirred at 100 °C in air for 2 h. After cooling, Na2CO3 (5 mL of 10% solution in water) was added, and the aqueous layer was extracted with CH2Cl2 (2 × 5 mL). The combined organic extracts were dried over anhyd Na2SO4 and evaporated in vacuo. The residue was dissolved in CDCl3 and analyzed by 1H NMR spectroscopy [using bis(ethylene glycol) dimethyl ether as an internal standard]; the identity of every product was confirmed by comparison with spectroscopic data in the literature.

17

A 5-mL round-bottom flask was charged with ArI (1 mmol), alkyne (1.5 mmol), catalyst 2 (0.001 mmol Pd), and pyrrolidine (2 mL). The mixture was stirred at 100 °C in air for 6 h. After cooling, the solvent was evaporated in vacuo. The residue was dissolved in CDCl3 and analyzed by 1H NMR spectroscopy [using bis(ethylene glycol) dimethyl ether as an internal standard]; the identity of every product was confirmed by comparison with spectroscopic data in the literature.

18

The highest value (80,000) was achieved by reaction of 4-chlorobenzene and 1-octyne in the presence of catalyst 2b (Table [3] , entry 14). When 0.01 mol% Pd was employed, 100% conversion and 80% yield for the corresponding 1-phenyloctyne were obtained; TOF = 4444.