References
1a
Cimanga K.
De Bruyne T.
Pieters L.
Clayes M.
Vlietinck A.
Tetrahedron Lett.
1996,
37:
1703
1b
Sharaf MHM.
Schiff PL.
Tackie AN.
Phoebe CH.
Martin GE.
J. Heterocycl. Chem.
1996,
33:
239
1c
Pousset J.-L.
Martin M.-T.
Jossang A.
Bodo B.
Phytochemistry
1995,
39:
735
2a
Kansal VK.
Potier P.
Tetrahedron
1986,
42:
2389
2b
Devarj R.
Cushman M.
Bioorg. Med. Chem. Lett.
1997,
7:
369
3
Molina A.
Vaquero JJ.
Garcia-Navio JL.
Alvarez-Builla J.
Pascual-Teresa B.
Gago F.
Rodrigo MM.
Ballesteros M.
J. Org. Chem.
1996,
61:
5587
4
Cimanga K.
De Bruyne T.
Pieters L.
Vlietinck AJ.
Turger CA.
J. Nat. Prod.
1997,
60:
688
5a
Peczynska-Czoch W.
Pognan F.
Kaczmarek L.
Boratynski J.
J. Med. Chem.
1994,
37:
3503
5b
Kaczmarek L.
Balicki R.
Nantka-Namirski P.
Peczynska-Czoch W.
Mordarski M.
Arch. Pharm.
1998,
321:
463
6a
Molina P.
Alajarin M.
Vidal A.
J. Chem. Soc., Chem. Commun.
1990,
1277
6b
Molina P.
Alajarin M.
Vidal A.
Sanchez-Andrada P.
J. Org. Chem.
1992,
57:
929
6c
Chen Y.-L.
Hung H.-M.
Lu C.-M.
Li K.-C.
Tzeng C.-C.
Bioorg. Med. Chem.
2004,
12:
6539
6d
Sundaram GSM.
Venkatesh C.
Syam Kumar UK.
Ila H.
Junjappa H.
J. Org. Chem.
2004,
69:
5760
7
Molina P.
Fresneda PM.
Delgado S.
Synthesis
1999,
326
8
Timari G.
Soos T.
Hajos G.
Synlett
1997,
1067
9
Shi C.
Zhang Q.
Wang KK.
J. Org. Chem.
1999,
64:
925
10
Kaczmarek L.
Peczynska-Czoch W.
Osiadacz J.
Mordarski M.
Sokalski WA.
Boratynski J.
Marcinkowska E.
Glazman-Kusnierczyk H.
Radzikowski C.
Bioorg. Med. Chem.
1999,
7:
2457
11a
Engqvist R.
Bergman J.
Org. Prep. Proced. Int.
2004,
36:
386
11b
Alajarin M.
Molina P.
Vidal A.
J. Nat. Prod.
1997,
60:
747
12a
Takechi N.
Ait-Mohand S.
Médebielle M.
Dolbier WR.
Tetrahedron Lett.
2002,
43:
4317
12b
Ait-Mohand S.
Takechi N.
Médebielle M.
Dolbier WR.
Org. Lett.
2001,
3:
4271
12c
Médebielle M.
Keirouz R.
Okada E.
Ashida T.
Synlett
2001,
821
12d
Dolbier WR.
Médebielle M.
Ait-Mohand S.
Tetrahedron Lett.
2001,
42:
4811
13
Giuglio-Tonolo G.
Terme T.
Médebielle M.
Vanelle P.
Tetrahedron Lett.
2003,
44:
6433
14
Giuglio-Tonolo G.
Terme T.
Médebielle M.
Vanelle P.
Tetrahedron Lett.
2004,
45:
5121
15
Giuglio-Tonolo G.
Terme T.
Vanelle P.
Synlett
2005,
251
16a
Terme T.
Crozet MP.
Maldonado J.
Vanelle P. In
Electron Transfer Reactions in Organic Synthesis
Vanelle P.
Research Signpost;
Trivandrum:
2002.
p.1
16b
Terme T.
Beziane A.
Vanelle P.
Lett. Org. Chem.
2005,
2:
367
17a
Amiri-Attou O.
Terme T.
Vanelle P.
Molecules
2005,
10:
545
17b
Kantevari S.
Narasimhaji CV.
Mereyala HB.
Tetrahedron
2005,
61:
5849
18
General Procedure for the Reaction of
o
-Nitrobenzyl Chloride (1a-e) and 1-Methyl Isatin (2), Using TDAE.
Into a two-necked flask equipped with a drying tube (silica gel) and a nitrogen inlet was added 6 mL of anhyd DMF solution of o-nitrobenzyl chloride (1a-e, 0.4 g, 1.8 mmol) and 1-methyl isatin (2, 0.8 g, 5.4 mmol, 3 equiv) at -20 °C. The solution was stirred and maintained at this temperature for 30 min and then the TDAE (0.42 g, 1.8 mmol) was added dropwise (via syringe). A red color immediately developed with the formation of a fine, white precipitate. The solution was vigorously stirred at -20 °C for 1 h and then warmed up to r.t. for 2 h. After this time TLC analysis (CH2Cl2) clearly showed that compounds (1a-e) was totally consumed. The orange-red turbid solution was filtered (to remove the octamethyl-oxamidinium dichloride) and hydrolyzed with 80 mL of H2O. The aqueous solution was extracted with CHCl3 (3 × 40 mL), the combined organic layers washed with H2O (3 × 40 mL) and dried over MgSO4. Evaporation of the solvent left an orange viscous liquid as crude product. Purification by silica gel chromatography (CH2Cl2) and recrystallization from EtOH gave the corresponding α-hydroxy derivatives.
New products: compound 3a: white solid; mp 176 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.01 (s, 3 H), 3.25 (d, J
AB
= 13.4 Hz, 1 H), 3.65 (d, J
AB
= 13.4 Hz, 1 H), 6.20 (br s, 1 H), 6.70 (m, 1 H), 6.92 (m, 2 H), 7.26 (m, 2 H), 7.50 (s, 2 H), 7.78 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.9, 75.6, 108.5, 122.3, 123.8, 124.2, 128.3, 129.4, 130.3, 132.1, 134.0, 142.8, 150.6, 176.8. The C-nitro was not observed in this experiment. Anal. Calcd for C16H14N2O4: C, 64.42; H, 4.73; N, 9.39. Found: C, 64.36; H, 4.80; N, 9.50.
Compound 3b: yellow solid; mp 201 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 2.31 (s, 3 H), 3.01 (s, 3 H), 3.25 (d, J
AB
= 13.3 Hz, 1 H), 3.64 (d, J
AB
= 13.3 Hz, 1 H), 6.19 (br s, 1 H), 6.75 (m, 1 H), 6.92 (m, 2 H), 7.10 (s, 1 H), 7.26 (m, 2 H), 7.71 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 20.9, 25.9, 39.1, 75.7, 108.4, 122.2, 123.7, 124.4, 128.6, 129.3, 129.5, 130.4, 134.5, 142.6, 142.8, 148.2, 176.9. Anal. Calcd for C17H16N2O4: C, 65.38; H, 5.16; N, 8.97. Found: C, 65.60; H, 5.25; N, 9.08.
Compound 3c: yellow solid; mp 206 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.02 (s, 3 H), 3.24 (d, J
AB
= 13.5 Hz, 1 H), 3.54 (d, J
AB
= 13.5 Hz, 1 H), 6.22 (br s, 1 H), 6.75 (m, 1 H), 6.94 (m, 2 H), 7.29 (m, 2 H), 7.67 (m, 1 H), 7.93 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.4, 75.2, 108.6, 122.4, 123.7, 124.0, 128.5, 129.4, 130.3, 131.9, 132.2, 135.7, 142.7, 151.0, 176.6. Anal. Calcd for C16H13ClN2O4: C, 57.75; H, 3.94; N, 8.42. Found: C, 57.90; H, 4.00; N, 8.49.
Compound 3d: yellow solid; mp 233 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 2.98 (s, 3 H), 3.36 (d, J
AB
= 13.3 Hz, 1 H), 3.63 (d, J
AB
= 13.3 Hz, 1 H), 3.70 (s, 3 H), 3.75 (s, 3 H), 6.19 (br s, 1 H), 6.76 (s, 1 H), 6.91 (m, 3 H), 7.25 (m, 1 H), 7.39 (s, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.9, 55.9, 56.0, 76.0, 107.9, 108.5, 115.6, 123.2, 123.8, 129.3, 130.5, 142.6, 142.9, 147.3, 151.3, 177.0. The C-nitro was not observed in this experiment. Anal. Calcd for C18H18N2O6: C, 60.33; H, 5.06; N, 7.82. Found: C, 60.37; H, 5.16; N, 7.80.
19
Artico M.
Silvestri R.
Pagnozzi E.
Stefancich G.
Massa S.
Loi AG.
Putzolu M.
Corrias S.
Spiga MG.
La Colla P.
Bioorg. Med. Chem.
1996,
837
20
General Procedure for Reduction-Cyclization-Double Dehydration Step.
Iron powder (1.8 g, 33.6 mmol, 28 equiv) was added over a period of 0.5 h to a stirred solution of the appropriate starting material (3a-e,1.2 mmol) in glacial AcOH (68 mL) while heating at 110 °C, then the mixture was maintained at 110 °C for 48 h. After filtration on Celite® the solvent was evaporated under reduced pressure and the residue was neutralized with an aq solution of NaHCO3. After extraction with CHCl3 (3 × 30 mL), the combined organic layers washed with H2O (3 × 40 mL) and dried over MgSO4. Evaporation of the solvent left a viscous liquid as crude product. Purification by silica gel chromatography (CH2Cl2) and recrystallization from EtOH gave the corresponding 6-methyl-6H-indolo[2,3-b]quinolines (4a-e).
New products: compound 4a: orange solid; mp 57 °C. 1H NMR (200 MHz, CDCl3): δ = 3.82 (s, 3 H), 7.27 (m, 2 H), 7.50 (m, 2 H), 7.74 (m, 1 H), 7.90 (m, 1 H), 8.00 (m, 1 H), 8.17 (m, 1 H), 8.44 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.4, 108.4, 117.8, 119.6, 120.1, 121.1, 122.6, 123.9, 126.9, 127.3, 127.8, 128.3, 128.6, 142.5, 146.6, 152.4. Anal. Calcd for C16H12N2: C, 82.73; H, 5.21; N, 12.06. Found: C, 82.56; H, 5.38; N, 12.00.
Compound 4b: orange solid; mp 106 °C. 1H NMR (200 MHz, CDCl3): δ = 2.58 (s, 3 H), 3.99 (s, 3 H), 7.36 (m, 2 H), 7.57 (m, 2 H), 7.76 (s, 1 H), 8.09 (m, 2 H), 8.63 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 21.4, 27.7, 108.6, 118.1, 119.8, 120.5, 121.3, 124.1, 126.7, 127.2, 127.3, 127.9, 131.1, 132.4, 142.8, 145.3, 152.5. Anal. Calcd for C17H14N2: C, 82.90; H, 5.73; N, 11.37. Found: C, 83.01; H, 5.85; N, 11.56.
Compound 4c: white solid; mp 164 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.90 (s, 3 H), 7.34 (m, 1 H), 7.48 (m, 1 H), 7.62 (m, 2 H), 8.02 (m, 1 H), 8.13 (m, 1 H), 8.27 (m, 1 H), 9.06 (s, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 27.7, 109.6, 118.0, 119.6, 120.4, 121.9, 122.4, 123.4, 125.8, 127.9, 128.6, 130.6, 133.5, 142.6, 146.6, 152.6. Anal. Calcd for C16H11ClN2: C, 72.05; H, 4.16; N, 10.50. Found: C, 72.04; H, 4.24; N, 10.54.
Compound 4d: yellow solid; mp 216 °C. 1H NMR (200 MHz, CDCl3): δ = 3.97 (s, 3 H), 4.05 (s, 3 H), 4.09 (s, 3 H), 7.25 (s, 1 H), 7.27 (m, 1 H), 7.40 (m, 1 H), 7.48 (s, 1 H), 7.55 (m, 1 H), 8.10 (m, 1 H), 8.57 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.7, 56.0, 56.1, 106.2, 106.7, 108.5, 116.1, 119.0, 119.6, 120.5, 120.8, 125.9, 127.2, 142.0, 143.7, 147.2, 152.0, 152.2. Anal. Calcd for C18H16N2O2: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.98; H, 5.57; N, 9.62.
Compound 4e: yellow solid; mp 193 °C. 1H NMR (200 MHz, CDCl3): δ = 3.94 (s, 3 H), 6.09 (s, 2 H), 7.21 (s, 1 H), 7.27 (m, 1 H), 7.40 (m, 1 H), 7.44 (s, 1 H), 7.54 (m, 1 H), 8.07 (m, 1 H), 8.49 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.6, 101.4, 103.5, 104.5, 108.6, 116.0, 119.6, 120.1, 120.3, 120.9, 126.3, 127.2, 142.0, 145.0, 145.3, 150.4, 151.8. Anal. Calcd for C17H12N2O2: C, 73.90; H, 4.38; N, 10.14. Found: C, 74.00; H, 4.40; N, 9.80.
21
Porter JC.
Robinson R.
Wyler M.
J. Chem. Soc.
1941,
620