Subscribe to RSS
DOI: 10.1055/s-2005-918938
Baeyer-Villiger Oxidation of Bridged endo-Tricyclic Ketones with Engineered Escherichia coli Expressing Monooxygenases of Bacterial Origin
Publication History
Publication Date:
12 October 2005 (online)

Abstract
Whole-cell biotransformations using engineered strains of Escherichia coli expressing cyclopentanone (CPMO) and cyclohexanone monooxygenases (CHMO) of various bacterial origins have been tested for substrate acceptance on tricyclic ketones. Based on the stereopreference of the biocatalytic Baeyer-Villiger oxidation, our recent clustering of this library of enzymes into two distinct groups based on protein sequence was confirmed. Together with short and facile reaction sequences for the production of the substrate ketones, microbial biooxidation enables access to antipodal product lactones as versatile building blocks in natural product and bioactive compound synthesis.
Key words
biocatalysis - biooxidation - recombinant whole-cell biotransformation - Baeyer-Villiger oxidation - monooxygenase - stereoselectivity
-
1a
Mihovilovic MD.Rudroff F.Grötzl B. Curr. Org. Chem. 2004, 8: 1057 -
1b
Brink G.-J.Arends IWCE.Sheldon RA. Chem. Rev. 2004, 104: 4105 -
2a
Bolm C. In Peroxide ChemistryAdam W. Wiley-VCH; Weinheim: 2000. p.494-510 -
2b
Strukul G. Angew. Chem. Int. Ed. 1998, 37: 1198 -
3a
Kamerbeek NM.Janssen DB.van Berkel WJH.Fraaije MW. Adv. Synth. Catal. 2003, 345: 667 -
3b
Mihovilovic MD.Müller B.Stanetty P. Eur. J. Org. Chem. 2002, 3711 -
3c
Stewart JD. Curr. Org. Chem. 1998, 2: 195 -
3d
Roberts SM.Wan PWH. J. Mol. Catal. B: Enzym. 1998, 4: 111 -
3e
Willetts A. Trends Biotechnol. 1997, 15: 55 -
3f
Walsh CT.Chen Y.-CJ. Angew. Chem. 1988, 100: 342 - 4
Mihovilovic MD.Rudroff F.Grötzl B.Kapitan P.Snajdrova R.Rydz J.Mach R. Angew. Chem. Int. Ed. 2005, 44: 3609 - 5 For another evaluation of some BVMOs of this library see:
Kyte BG.Rouviere P.Cheng Q.Stewart JD. J. Org. Chem. 2004, 69: 12 -
6a
Mihovilovic MD.Rudroff F.Müller B.Stanetty P. Bioorg. Med. Chem. Lett. 2003, 13: 1479 -
6b
Wang S.Kayser MM.Iwaki H.Lau PCK. J. Mol. Catal. B: Enzym. 2003, 22: 211 -
6c
Mihovilovic MD.Müller B.Kayser MM.Stanetty P. Synlett 2002, 700 -
7a
Mihovilovic MD.Kapitan P. Tetrahedron Lett. 2004, 45: 2751 -
7b
Kelly DR.Knowles CJ.Mahdi JG.Taylor IN.Wright MA. J. Chem. Soc., Chem. Commun. 1995, 729 -
7c
Alphand V.Furstoss R. J. Org. Chem. 1992, 57: 1306 - 8
Stewart JD. Curr. Opin. Biotechnol. 2000, 363 - 9
Van Beilen JB.Duetz WA.Schmid A.Witholt B. Trends Biotechnol. 2003, 21: 170 - 10 For a S. cerevisiae based whole-cell expression system of BVMOs see:
Kayser M.Chen G.Stewart J. Synlett 1999, 153 ; and references therein - 11 For an excellent review in biocatalytic desymmetrization reactions see:
Garcia-Urdiales E.Alfonso I.Gotor V. Chem. Rev. 2005, 105: 313 - 12
Gassman PG.Marshall JL. Org. Synth. 1968, 48: 68 - 13
Setzer WN.Whitaker KW.Thompson MA.Yang X.-J.Brown ML. J. Org. Chem. 1992, 57: 2812 - 14
Fujita E.Inoue T.Nagao Y. Tetrahedron 1984, 40: 1215 -
15a
Taschner MJ.Peddada L. J. Chem. Soc., Chem. Commun. 1992, 1384 -
15b
Taschner MJ.Black DJ. J. Am. Chem. Soc. 1988, 110: 6892 - 16
Donoghue NA.Norris DB.Trudgill PW. Eur. J. Biochem. 1976, 63: 175 - 17
Brzostowicz P.Walters DM.Thomas SM.Nagarajan V.Rouviere PE. Appl. Environ. Microbiol. 2003, 69: 334 - 18
Bramucci MG,Brzostowicz PC,Kostichka KN,Nagarajan V,Rouviere PE, andThomas SM. inventors; PCT Int. Appl., WO 2003020890. ; Chem. Abstr. 2003, 138, 233997 - 19
Brzostowicz PC.Gibson KL.Thomas SM.Blasko MS.Rouviere PE. J. Bacteriol. 2000, 182: 4241 - 20
Griffin M.Trudgill PW. Eur. J. Biochem. 1976, 63: 199 -
22a
Mihovilovic MD.Rudroff F.Grötzl B.Stanetty P. Eur. J. Org. Chem. 2005, 809 -
22b
Mihovilovic MD.Müller B.Schulze A.Stanetty P.Kayser MM. Eur. J. Org. Chem. 2003, 2243 -
24a
Doig SD.Pickering SCR.Lye GJ.Woodley JM. Biotechnol. Bioeng. 2002, 42 -
24b
Lye GJ.Dalby PA.Woodley JM. Org. Process Res. Dev. 2002, 6: 434 - 26
Yamamoto H.Katsube J.Sugie A.Shimomura H. Tetrahedron Lett. 1976, 45: 4099 - 27
Reetz MT.Brunner B.Schneider T.Schulz F.Clouthier CM.Kayser MM. Angew. Chem. Int. Ed. 2004, 43: 4078 - 28
Bocola M.Schulz F.Leca F.Vogel A.Fraaije MW.Reetz MT. Adv. Synth. Catal. 2005, 347: 979 - 29
Malito E.Alfieri A.Fraaije MW.Mattevi A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 13157
References
endo
-Tricyclo[6.2.1.0
²,7
]undecan-11-one (
1a): yellow oil. 1H NMR (200 MHz, CDCl3): δ = 0.81-1.89 (m, 14 H), 2.06-2.14 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 17.1 (t), 18.1 (t), 19.5 (t), 32.9 (d), 43.4 (d), 216.7 (s).
endo
-Tricyclo[5.2.1.0
²,6
]decan-10-one (
1b): yellow oil. 1H NMR (200 MHz, CDCl3): δ = 1.63-1.75 (m, 12 H), 2.46 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 27.7 (t), 29.2 (t), 29.9 (t), 38.2 (d), 43.6 (d), 214.9 (s).
endo
-Tricyclo[5.2.1.0
²,6
]dec-8-en-4-one (
1c): beige amorphous solid; mp = 97-99 °C. 1H NMR (200 MHz, CDCl3): δ = 1.30-1.55 (m, 2 H), 1.70-1.90 (m, 2 H), 2.05-2.35 (m, 2 H), 2.70-2.95 (m, 4 H), 6.00-6.15 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 39.7 (d), 41.0 (t), 47.0 (d), 49.7 (t), 136.1 (d), 219.9 (s).
endo
-Tricyclo[5.2.1.0
²,6
]decan-4-one (
1d): colorless amorphous solid; mp = 97-100 °C. 1H NMR (200 MHz, CDCl3): δ = 1.16-1.59 (m, 6 H), 2.03-2.40 (m, 6 H), 2.51-2.74 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 22.1 (t), 38.6 (d), 39.3 (t), 40.6 (t), 41.3 (d), 221.0 (s).
Typical Procedure for Screening Experiment in Multi-Well Dishes (12 or 24 Wells).
Each well was charged with LB-amp medium (2 mL/12-well format or 1 mL/24-well format) and inoculated with 1% of an overnight preculture of recombinant E. coli strains. A plate was incubated at 120 rpm at 37 °C on an orbital shaker for 2 h. IPTG was added (final concentration of 0.025 mM) together with substrate (1 mg or 0.5 mg) and β-cyclodextrin (1 equiv). The plate was shaken at r.t. for 24 h and then analyzed by chiral phase GC after extraction of the sample with EtOAc.
Physical and Spectroscopic Data of Lactones 2a-d.
endo
-9-Oxatricyclo[6.2.2.0
²,7
]dodecan-10-one (
2a): beige crystals, mp 76-78 °C. 1H NMR (200 MHz, CDCl3): δ = 1.09-2.06 (m, 14 H), 2.39-2.41 (q, J = 2.7 Hz, 1 H), 4.36-4.41 (q, J = 3.3 Hz, 2 H). 13C NMR (50 MHz, CDCl3): δ = 16.9 (t), 19.3 (t), 19.5 (t), 20.0 (t), 20.5 (t), 20.8 (t), 32.3 (d), 36.2 (d), 39.8 (d), 78.9 (d), 177.3 (s). Specific optical rotation (CHMO
Brachy
): [α]D
20 -31.8 (c 0.95, CHCl3); 99% ee.
endo
-8-Oxatricyclo[5.2.2.0
²,6
]undecan-9-one (
2b): colorless crystals, mp 78-80 °C. 1H NMR (200 MHz, CDCl3): δ = 1.66-1.90 (m, 12 H), 2.55 (q, J = 3.1 Hz, 1 H), 4.55 (q, J = 3.7 Hz, 1 H). 13C NMR (50 MHz, CDCl3): δ = 16.7 (t), 20.6 (t), 27.7 (t), 27.9 (t), 28.1 (t), 37.7 (d), 39.2 (d), 41.2 (d), 78.9 (d), 177.3 (s). Specific optical rotation (CHMO
Rhodo2
): [α]D
20 -17.3 (c 1.70, CHCl3); 99% ee.
endo
-5-Oxatricyclo[6.2.1.0
²,7
]undec-9-en-4-one (
2c): colorless oil. 1H NMR (200 MHz, CDCl3): δ = 1.45 (d, J = 8.0 Hz, 1 H), 1.64 (d, J = 8.0 Hz, 1 H), 1.93-2.98 (m, 6 H), 3.70 (m, 1 H), 4.30 (m, 1 H), 6.05-6.28 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 33.4 (t), 35.9 (d), 38.6 (d), 44.2 (d), 46.0 (d), 50.6 (t), 69.9 (t), 134.9 (d), 136.3 (d), 173.7 (s). Specific optical rotation (CHMO
Brevi2
): [α]D
20 -12.7 (c 1.72, CHCl3); 74% ee.
endo
-5-Oxatricyclo[6.2.1.0
²,7
]undecan-4-one (
2d): colorless solid, mp 78-80 °C. 1H NMR (200 MHz, CDCl3): δ = 1.30-1.59 (m, 6 H), 2.12-2.55 (m, 6 H), 4.02-4.32 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 21.9 (t), 23.3 (t), 30.4 (t), 35.9 (d), 37.0 (d), 39.0 (d), 40.7 (d), 41.2 (t), 68.2 (t), 174.3 (s). Specific optical rotation (CHMO
Rhodo1
): [α]D
20 +32.2 (c 3.53, CHCl3); 95% ee.