Synlett 2005(17): 2599-2602  
DOI: 10.1055/s-2005-917112
LETTER
© Georg Thieme Verlag Stuttgart · New York

Model Studies towards the Total Synthesis of GKK1032s, Novel Antibiotic Anti-Tumor Agents: Enantioselective Synthesis of the Alkyl Aryl Ether Portion of GKK1032s

Moriteru Asanoa, Munenori Inoue*a,b, Tadashi Katoh*c
a Department of Electronic Chemistry, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502, Japan
b Sagami Chemical Research Center, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
c Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
Fax: +81(22)2752013; e-Mail: katoh@tohoku-pharm.ac.jp;
Further Information

Publication History

Received 30 July 2005
Publication Date:
05 October 2005 (online)

Abstract

An enantioselective synthesis of an alkyl aryl ether ­portion of GKK1032s, novel antibiotic anti-tumor agents, was achieved via Mitsunobu reaction between a sterically congested ­indenol derivative and a p-substituted phenol derivative. The indenol derivative, the key substrate for the Mitsunobu reaction, was ­efficiently synthesized starting from the known indanone derivative through regio- and stereoselective methylation, Saegusa oxidation, and carbonyl transposition as the pivotal steps.

    References

  • 1a Koizumi F, Hasegawa A, Ando K, Ogawa T, and Hara M. inventors; Jpn. Kokai Tokkyo Koho, JP  2001247574. 
  • 1b Hasegawa A. Koizumi F. Takahashi Y. Ando K. Ogawa T. Hara M. Yoshida M. 43rd Tennen Yuki Kagobutu Touronnkai Koen Yoshishu   Osaka; Japan: 2001.  p.467 
  • 2 Omura S, Komiyama K, Hayashi M, Masuma R, and Fukami A. inventors; Jpn. Kokai Tokkyo Koho, JP  2002255969. 
  • 3 He H. Yang HY. Bigelis R. Solum EH. Greenstein M. Carter GT. Tetrahedron Lett.  2002,  43:  1633 
  • 4a Arai N. Ui H. Omura S. Kuwajima I. Synlett  2005,  1691 
  • 4b Kurosaka J. Sinkawa T. Miyazaki Y. Munakata R. Takao K. Tadano K. The 85th Annual Spring Meeting of the Chemical Society of Japan, Yokohama Japan  2005,  Abstract 2:  874 
  • 4c Hasegawa D. Sakuma Y. Takagi Y. Uchiro T. The 125th Annual Meeting of the Pharmaceutical Society of Japan, Tokyo Japan  2005,  Abstract 4:  71 
  • 5 Asano M. Inoue M. Katoh T. Synlett  2005,  1539 
  • 6a Mitsunobu O. Yamada M. Mukaiyama T. Bull. Chem. Soc. Jpn.  1967,  40:  935 
  • 6b Mitsunobu O. Yamada M. Bull. Chem. Soc. Jpn.  1967,  40:  2380 
  • 6c Mitsunobu O. Synthesis  1981,  1 
  • 6d Hughes DL. Org. React.  1993,  42:  335 
  • 7 Ito Y. Hirao T. Saegusa T. J. Org. Chem.  1978,  43:  1011 
  • 8a Hajos ZG. Parrish DR. J. Org. Chem.  1974,  39:  1615 
  • 8b Hajos ZG. Parrish DR. Oliveto EP. Tetrahedron  1968,  24:  2039 
  • 9a Micheli RA. Hajos ZG. Cohen N. Parrish DR. Portland LA. Scianmanna W. Scott MA. Wehrli PA. J. Org. Chem.  1975,  40:  675 
  • 9b Nagao K. Yoshimura I. Chiba M. Kim S.-W. Chem. Pharm. Bull.  1983,  31:  114 
  • 10a Barton DHR. McCombie SW. J. Chem. Soc., Perkin Trans. 1  1975,  1574 
  • 10b Izuhara T. Katoh T. Org. Lett.  2001,  3:  1653 
  • 11a Dess DB. Martin JC. J. Org. Chem.  1983,  48:  4155 
  • 11b Dess DB. Martin JC. J. Am. Chem. Soc.  1991,  113:  7277 
  • 12 Luche J.-L. J. Am. Chem. Soc.  1978,  100:  2226 
  • 13 Data for 8. Colorless viscous oil, [α]D 20 -52.2 (c 0.70 CHCl3). IR (neat): 644, 808, 993, 1039, 1049, 1140, 1205, 1377, 1439, 1456, 2839, 2868, 2906, 2949, 3317 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.51-0.61 (m, 1 H), 0.83 (s, 3 H), 0.85-0.94 (m, 1 H), 0.89 (d, J = 6.5 Hz, 3 H), 1.05 (d, J = 6.6 Hz, 3 H), 1.00-1.08 (m, 1 H), 1.23 (d, J = 7.4 Hz, 1 H), 1.55-1.62 (m, 1 H), 1.65 (t, J = 1.8 Hz, 3 H), 1.68-1.75 (m, 1 H), 1.76-1.89 (m, 2 H), 4.47-4.54 (m, 1 H), 5.27 (t, J = 1.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 12.3, 19.4, 20.7, 22.8, 28.3, 29.5, 43.3, 45.8, 48.0, 66.5, 77.7, 127.8, 152.6. HRMS (EI): m/z calcd for C13H22O [M+]: 192.0786; found: 192.0790
  • 16 Degenhardt CR. J. Org. Chem.  1980,  45:  2763 
14

This remarkable stereoselectivity can be rationalized by the consideration that the hydride attack occurred exclusively from α-face of the carbonyl group under an influence of stereoelectronic effect, which may involve the so-called ‘product development control’.

15

Since separation of 13α-form and 13β-form was very difficult, the ratio was estimated by 1H NMR (500 MHz) spectroscopy.

17

Data for 9.
White solid, mp 101-104 °C. IR (KBr): 652, 677, 818, 843, 972, 985, 1171, 1186, 1223, 1516, 1743, 3342 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.89-1.99 (m, 1 H), 2.21-2.30 (m, 1 H), 2.31-2.40 (m, 1 H), 2.41-2.51 (m, 1 H), 2.89 (dd, J = 14.2, 5.9 Hz, 1 H), 2.97 (dd, J = 14.2, 6.0 Hz, 1 H), 4.67-4.75 (m, 1 H), 5.05 (s, 1 H), 6.78 (d, J = 8.5 Hz, 2 H), 7.09 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 26.9, 28.7, 40.4, 81.1, 115.5 (2 C), 127.7, 130.7 (2 C), 154.8, 177.5. HRMS (EI): m/z calcd for C11H12O3 [M+]: 194.1671; found: 194.1667.

18

Data for 6.
Colorless viscous oil, [α]D 20 +129.5 (c 0.16 CHCl3). IR (neat): 607, 634, 806, 937, 1005, 1045, 1173, 1227, 1240, 1373, 1508, 1736, 1774, 2910, 2949 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.54-0.65 (m, 1 H), 0.82 (t, J = 12.0 Hz, 1 H), 0.90 (d, J = 6.4 Hz, 3 H), 0.92 (d, J = 6.5 Hz, 3 H), 1.18 (s, 3 H), 1.30 (dd, J = 11.6, 5.1 Hz, 1 H), 1.63 (dd, J = 11.6, 4.1 Hz, 1 H), 1.71 (s, 3 H), 1.80-1.88 (m, 1 H), 1.88-2.07 (m, 3 H), 2.18-2.27 (m, 1 H), 2.30-2.50 (m, 2 H), 2.85 (dd, J = 14.1, 6.4 Hz, 1 H), 2.99 (dd, J = 14.1, 5.8 Hz, 1 H), 4.64-4.73 (m, 1 H), 4.82-4.87 (m, 1 H), 5.67 (s, 1 H), 6.85 (d, J = 8.5 Hz, 2 H), 7.09 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 12.8, 19.4, 22.0, 22.9, 26.7, 27.0, 28.1, 28.7, 40.40 (1/2 C), 40.39 (1/2 C), 43.1, 45.6, 48.2, 60.4, 78.896 (1/2 C), 78.868 (1/2 C), 81.1, 115.695 (1/2 C × 2), 115.703 (1/2 C × 2), 121.883 (1/2 C), 121.892 (1/2 C), 127.104 (1/2 C), 127.111 (1/2 C), 130.3 (2 C), 157.840 (1/2 C), 157.831 (1/2 C), 159.6, 177.155 (1/2 C), 177.172 (1/2 C). HRMS-FAB: m/z calcd for C24H33O3 [M + H]+: 369.2430; found: 369.2465.