Subscribe to RSS
DOI: 10.1055/s-2005-917107
Liquid-Phase Traceless Synthesis of 3,5-Disubstituted 1,2,4-Triazoles
Publication History
Publication Date:
05 October 2005 (online)

Abstract
A liquid-phase traceless route to 3,5-disubstituted-1,2,4-triazoles has been developed, which allows for the incorporation of two elements of diversity. The heterocycle was constructed upon PEG6000 (soluble polymer) modified by 4-hydroxy-2-methoxybenzaldehyde, from which a traceless cleavage could be realized with TFA-CH2Cl2. This method provided a library of 3,5-disubstituted-1,2,4-triazoles with high yields and purity.
Key words
soluble polymer - 1,2,4-triazoles - Lawesson’s reagent - cyclization reaction - traceless cleavage
-
1a
Fruchtel JS.Jung G. Angew. Chem., Int. Ed. Engl. 1996, 35: 17 -
1b
Lorsbach BA.Kurth MJ. Chem. Rev. 1999, 99: 1549 -
1c
Dolle RE. J. Comb. Chem. 2003, 5: 693 -
2a
Gravert DJ.Janda KD. Chem. Rev. 1997, 97: 489 -
2b
Wentworth P.Janda KD. Chem. Commun. 1999, 1917 -
2c
Toy PH.Janda KD. Acc. Chem. Res. 2000, 33: 546 -
3a
Li Z.Wang JK.Wang XC. Synth. Commun. 2003, 33: 3567 -
3b
Wang XC.Wang JK.Li Z. Chin. Chem. Lett. 2004, 15: 635 -
3c
Wang JK.Zong YX.An HG.Xue GQ.Wu DQ.Wang YS. Tetrahedron Lett. 2005, 46: 3797 -
3d
Wang JK.Zong YX.Yue GR. Synlett 2005, 1135 -
3e
Wang JK.Zong YX.Yue GR.An HG.Wang XC. J. Chem. Res., Synop. 2005, 335 -
4a
Zhao X.Metz WA.Sieber F.Janda KD. Tetrahedron Lett. 1998, 39: 8433 -
4b
Blettner CG.Konig WA.Quhter G.Stenzel W.Schotten T. Synlett 1999, 307 -
4c
Racker R.Doring K.Reiser O. J. Org. Chem. 2000, 65: 6932 -
4d
Luisa G.Giorgio M.Pietro C. J. Chem. Soc., Perkin Trans. 1 2002, 2504 -
5a
Chen C.Dagnino R.Huang CQ.McCarthy JR.Grigoriadis DE. Bioorg. Med. Chem. Lett. 2001, 11: 3165 -
5b
Jenkins SM.Wadsworth HJ.Bromidge S.Orlek BS.Wyman PA.Riley GJ.Hawkins J. J. Med. Chem. 1992, 35: 2392 -
6a
Burrell G.Evans JM.Hadley MS.Hicks F.Stemp G. Bioorg. Med. Chem. Lett. 1994, 4: 1285 -
6b
Tully WR.Gardner CR.Gillepsie RJ.Westwood R. J. Med. Chem. 1991, 34: 2060 - 7
Duncia JV.Santela JB.Higley A.VanAtten MK.Weber PC.Alexander RS.Kettner CA.Pruitt JR.Liauw AY.Quan ML.Knabb RM.Wexler RR. Bioorg. Med. Chem. Lett. 1998, 8: 775 - 8
Samanta SK.Yli-Kauhaluoma J. J. Comb. Chem. 2005, 7: 142 - 9
Brunn E.Funke E.Gotthardt H.Huisgen R. Chem. Ber. 1971, 104: 1562 - 10
Hitostuyanagi Y.Motegi S.Fukaya H.Takeya K. J. Org. Chem. 2002, 67: 3266 - 11
Boeglin D.Cantel S.Heitz A.Martinez J.Fehrentz J.-A. Org. Lett. 2003, 5: 4465 - 12
Harju K.Vahermo M.Mutikainen I.Yli-Kauhaluoma J. J. Comb. Chem. 2003, 5: 826 - 13
Pietta PG.Cavallo PF.Takahashi K.Marshall GR. J. Org. Chem. 1974, 39: 44 -
14a
Clausen K.Thorsen M.Lawesson SO. Tetrahedron 1981, 37: 3635 -
14b
Majer Z.Zewdu M.Hollosi M.Seprodi J.Vadasz Z.Teplan I. Biochem. Biophys. Res. Commun. 1988, 150: 1017 -
14c
Pons JF.Mishir Q.Nouvet A.Brookfield F. Tetrahedron Lett. 2000, 41: 4965
References
All the compounds were characterized and their structures were confirmed by spectrometric methods (1H NMR, IR and MS) and elemental analysis.
For compound 8e: 1H NMR (400 MHz, DMSO-d
6): δ = 3.86 (6 H, s), 7.04-7.06 (4 H, m), 7.93-7.96 (4 H, m). IR: 1575, 1680, 2866, 3148 cm-1. MS (EI): m/z = 281 [M+]. Anal. Calcd for C16H15N3O2: C, 68.31; H, 5.37; N, 14.94. Found: C, 68.39; H, 5.31; N, 14.90.
For compound 8i: 1H NMR (400 MHz, DMSO-d
6): δ = 3.86 (3 H, s), 7.03-7.08 (2 H, m), 7.44-7.52 (2 H, m), 7.57-7.79 (4 H, m). IR: 1570, 1694, 2891, 3133 cm-1. MS (EI): m/z = 285 [M+]. Anal. Calcd for C15H12ClN3O: C, 63.05; H, 4.23; N, 14.71. Found: C, 63.17; H, 4.24; N, 14.68.