Subscribe to RSS
DOI: 10.1055/s-2005-872657
Diastereoselective Access to the Spirotetronate Subunit of the Quartromicins
Publication History
Publication Date:
05 August 2005 (online)
Abstract
The agalacto-spirotetronate B subunit of quartromicins was synthesized in a predictible manner, following the Claisen-Ireland/metathesis approach (CIM strategy). Ene-yne ring-closure and selective mismatch Sharpless dihydroxylation are discussed as key steps, allowing an efficient approach to these structures.
Key words
quartromicin - ene-yne metathesis - Claisen-Ireland rearrangement - asymmetric dihydroxylation - spirotetronate
- 1a 
             
            
Kusumi T.Ichikawa A.Kakisawa H.Tsunakawa M.Konishi M.Oki T. J. Am. Chem. Soc. 1991, 113: 8947 - 1b 
             
            
Yoshii E.Takeda K. Recent Prog. Chem. Synth. Antibiot. Relat. Microb. Prod. 1993, 67 - 2a 
             
            
Tsunakawa M.Tenmyo O.Tomita K.Naruse N.Kotake C.Miyaki T.Konishi M.Oki T. J. Antibiotics 1992, 45: 180 - 2b 
             
            
Tanabe-Tochikura A.Nakashima H.Murakami T.Tenmyo O.Oki T.Yamamoto N. Antiviral Chem. Chemother. 1992, 3: 345 - 3 
             
            
Roush WR.Sciotti RJ. J. Am. Chem. Soc. 1998, 120: 7411 - 4a 
             
            
Mallams AK.Puar MS.Rossman RR.Mc Phail AT.Macfarlane RD.Stephens RL. J. Org. Chem. 1992, 57: 2987 - 4b 
             
            
Marshall JA.Xie S. J. Chem. Soc, Perkin Trans. 1 1983, 1497 - 5 
             
            
Imai H.Kaniwa H.Tokunaga T.Fujita S.Furuya T.Matsumoto H.Shimizu M. J. Antibiot. 1987, 40: 1483 - 6 
             
            
Ohtsuka T.Nakayama N.Itezono Y.Shimma N.Kuwahara T.Yokose K.Seto H. J. Antibiot. 1993, 46: 18 - 7 
             
            
Hirayama N.Kasai M.Shirahata K.Ohashi Y.Sasada Y. Bull. Chem. Soc. Jpn. 1982, 55: 2984 - 8 
             
            
Takeda K.Sato M.Yoshii E. Tetrahedron Lett. 1986, 33: 3903 - 9 
             
            
Schroeder DR.Colson KL.Klohr SE.Lee MS.Matson JA.Brinen LS.Clardy J. J. Antibiot. 1996, 49: 865 - 10 
             
            
Bonjouklian R.Mynderse JS.Hunt AH.Deeter JB. Tetrahedron Lett. 1993, 34: 7857 - 11a 
             
            
Roush WR.Barda DA. Tetrahedron Lett. 1997, 51: 8781 - 11b 
             
            
Roush WR.Barda DA. Org. Lett. 2002, 9: 1539 - 11c 
             
            
Roush WR.Limberakis C.Barda DA. Org. Lett. 2002, 9: 1543 - 11d 
             
            
Roush WR.Barda DA.Limberakis C.Kunz RK. Tetrahedron 2002, 58: 6433 - 12 
             
            
Français A.Bedel O.Picoul W.Meddour A.Courtieu J.Haudrechy A. Tetrahedron: Asymmetry 2005, 16: 1141 - 13a  
            
[α]D 20 +37.5 (c 0.6, CHCl3) very close to the literature {[α]D 20 +37.7 (c 0.4, CHCl3)}.
 - 13b 
             
            
Hanessian S.Murray PJ.Sahoo SP. Tetrahedron Lett. 1985, 26: 5623 - 13c 
             
            
Herdeis C.Lütsch K. Tetrahedron: Asymmetry 1993, 1: 121 - 14 
             
            
Myers AG.Goldberg SD. Angew. Chem. Int. Ed. 2000, 39: 2732 - 15 
             
            
Ohira S.Okai K.Moritani T. J. Chem. Soc., Chem. Commun. 1992, 721 - 16a 
             
            
O’Neil SV.Quickley CA.Snider BB. J. Org. Chem. 1997, 62: 1970 - 16b 
             
            
Rancourt J.Burke SD. J. Am. Chem. Soc. 1991, 113: 2335 - 17 
             
            
Chatterjee AK.Morgan JP.Scholl M.Grubbs RH. J. Am. Chem. Soc. 2000, 122: 3783 - 19a 
             
            
Sedrani R.Thai B.France J.Cottens S. J. Org. Chem. 1998, 63: 10069 - 19b 
             
            
Andrus MB.Lepore SD.Sclafani JA. Tetrahedron Lett. 1997, 38: 4043 - 19c 
             
            
Matsuo G.Miki Y.Nakata M.Matsumura S.Toshima K. J. Org. Chem. 1999, 64: 7101 - 19d 
             
            
Andersson PG.Sharpless KB. J. Am. Chem. Soc. 1993, 115: 7047 - 20 
             
            
Bedel O.Haudrechy A.Langlois Y. Eur. J. Org. Chem. 2004, 3813 - 21 
             
            
Bouzide A.Sauvé G. Synlett 1997, 1153 - 22 
             
            
Ishihara K.Kubota M.Kurihara H.Yamamoto H. J. Am. Chem. Soc. 1995, 117: 4413 
References
         Typical CIM Procedure.
         
Ester 4 (900 mg, 1.34 mmol) was dissolved in dry toluene (17 mL) under argon and then cooled
         to -78 °C. A solution of KHMDS in toluene (0.5 M) was added dropwise (4 mL, 2 mmol,
         1.5 equiv) during 15 min. After 45 min, freshly distilled TMSCl (540 µL) was added
         and the resulting mixture was stirred for 5 min. Then, the mixture was warmed to r.t.
         and stirred for additional 3 h. The mixture was hydrolyzed with a 10% NH4Cl (aq) solution and the layers were separated. The aqueous layer was extracted with
         Et2O (3 × 20 mL), and the combined organic layers were dried, filtered, and the solvent
         was removed under reduced pressure. The crude product was esterified with diazomethane,
         and after evaporation dissolved in MeOH (15 mL). Excess of solid K2CO3 (5.4 mmol, 630 mg, 4 equiv) was added in one portion and this suspension was stirred
         overnight at r.t. After evaporation under reduced pressure, the product was dissolved
         in Et2O (30 mL) and washed with H2O (15 mL). The layers were separated and the aqueous one was extracted with Et2O (2 × 25 mL). The combined organic layers were dried, filtered and concentrated.
The compound was dissolved in toluene (40 mL) under an argon atmosphere, and a solution
         of second generation Grubbs’ catalyst (90 mg, 0.105 mmol, 0.08 equiv) in toluene (5
         mL) was then added. This solution was heated to 80 °C for 1 h. After cooling down,
         the mixture was concentrated, and the crude product was purified by silica gel column
         chromatography (175 g SiO2, Et2O-n-pentane, 1:5) to afford pure cyclized methyl ester 3 (747 mg, 73% yield for four steps).
Data for compound 3: 1H NMR (250 MHz, CDCl3): δ = 7.66 (4 H, m, CAr-H), 7.38 (6 H, m, CAr-H), 7.05 (2 H, d, CMPMar-H, J = 8.5 Hz), 6.74 (2 H, d, CMPMar-H, J = 8.5 Hz), 5.90-6.05 (1 H, m, C4-CHCHMe), 5.74 (1 H, s,  C3-H), 5.55-5.70 (1 H, m, C4-CHCHMe), 4.02-4.46 (2 H, AB syst., Ar-CH
         
            2
            ), 3.95-4.10 (2 H, m, C2-CH
         
            2
            -OSi), 3.78 (3 H, s, OMe), 3.57 (3 H, s, COOMe), 2.71 (1 H, m, C5-H), 2.25-2.35 (1 H, m, C6-Ha), 2.00-2.09 (1 H, m, C6-Hb), 1.78 (3 H, d, C4-CHCHMe, J = 6.25 Hz), 1.16 (3 H, d, C5-Me, J = 7.25 Hz), 1.11 (9 H, s, t-Bu), 1.03 (3 H, s, C2-Me) ppm. 13C NMR (62.5 MHz, CDCl3): δ = 173.4 (COOMe), 158.6 (C
         
            qAr
            -OMe), 136.7 (C4), 135.7 (CAr), 134.0 (C
         
            MPMar
            -CH2O), 133.8 (CqAr), 132.7 (C3), 130.5 (C4-CHCHMe), 129.3 (CAr), 128.0 (CAr), 127.4 (CAr), 123.2 (C4-CHCHMe), 113.5 (CAr), 84.3 (C1), 67.6 (CMPMar-CH2O), 65.8 (C2-CH2-OSi), 55.2 (ArOMe), 51.3 (COOMe), 43.8 (C2), 30.7 (C5), 28.1 (C6), 26.9 (SiCMe
         
            3
            ), 21.9 (C2-Me), 20.4 (C5-Me), 17.0 (SiCMe3) ppm. [α]D
         20 +17.3 (c 1.2, CHCl3). HRMS (ES): m/z calcd [M + Na]: 635.3169; found: 635.3183.
Data for compound 14: 1H NMR (250 MHz, CDCl3): δ = 7.66 (4 H, m, CAr-H), 7.35 (6 H, m, CAr-H), 5.44 (1 H, br d, C3-H), 5.16 (1 H, s, CO-CH), 5.01 (2 H, 2 collapsed d, O-CH2-O), 4.25 (1 H, d, C4-CH 2 -OSi, J = 12.8 Hz), 4.08 (1 H, d, C4-CH 2 -OSi), 3.73 (1 H, d, C2-CH 2 -OSi, J = 9.5 Hz), 3.63 (1 H, d, C2-CH 2 -OSi, J = 9.5 Hz), 3.37 (3 H, s, OMe), 2.77 (1 H, m, C5-H), 2.13 (1 H, dd, C6-Ha, J = 9.8 Hz, J = 13.7 Hz), 1.89 (1 H, dd, C6-Ha, J = 7 Hz, J = 13.7 Hz), 1.05 (24 H, m, C5-Me, C2-Me, 2 t-Bu) ppm. 13C NMR (62.5 MHz, CDCl3): δ = 182.7 (CO-CH2-O), 172.2 (CO), 139.9 (C4), 135.9 (CAr), 135.8 (CAr), 135.6 (CAr), 134.0 (CAr), 133.8 (CAr), 133.4 (CAr), 129.9 (CAr), 129.8 (CAr), 129.7 (CAr), 127.8 (CAr), 127.7 (CAr), 126.8 (C3), 96.9 (OMe), 91.2 (CO-CH), 87.4 (O-CH2-O), 70.2 (C4-CH2-OSi),, 66.0 (C2-CH2-OSi), 57.5 (C1), 42.5 (C2), 38.2 (C5), 29.8 (C6) 29.2 (C5-Me), 27.0 (C2-Me), 26.9 (2 SiCMe 3 ), 19.5 19.4 (SiCMe3). [α]D 20 -3.2 (c 0.3, CHCl3). HRMS (ES): m/z calcd [M + H]: 775.3850; found: 775.3875.
24Bedel, O. PhD Thesis, personal results.