References
1
Jørgensen KA.
Chem. Rev.
1989,
89:
431
2
Porter MJ.
Skidmore J.
Chem. Commun.
2000,
1215
3a
Katsuki T.
J. Mol. Catal. A: Chem.
1996,
113:
87
3b
Katsuki T.
Coord. Chem. Rev.
1995,
140:
189
3c
Cozzi PG.
Chem. Soc. Rev.
2004,
33:
410
3d
Khavrutskii IV.
Musaev DG.
Morokuma K.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5743
4a
Baley DC.
Langer SH.
Chem. Rev.
1995,
95:
477
4b
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
5a
Minutolo F.
Pini D.
Salvadori P.
Tetrahedron Lett.
1996,
37:
3375
5b
Canali L.
Cowan E.
DeLeuze H.
Gibson CL.
Sherrington DC.
Chem. Commun.
1998,
2561
5c
Sellner H.
Karjalainen JK.
Seebach D.
Chem.-Eur. J.
2001,
7:
2873
6a
Parton RF.
Vankelecom IFJ.
Tas D.
Janssen KBM.
Knops-Gerrits P.-P.
Jacobs PA.
J. Mol. Catal. A: Chem.
1996,
113:
283
6b
Janssen KBM.
Laquiere I.
Dehaen W.
Parton RF.
Vankelecom IFJ.
Jacobs PA.
Tetrahedron: Asymmetry
1997,
8:
3481
7a
Heinrichs C.
Holderich WF.
Catal. Lett.
1999,
58:
75
7b
Gbery G.
Zsigmond A.
Balkus KJ.
Catal. Lett.
2001,
74:
77
8
Pozzi G.
Cinato F.
Montanari F.
Quici S.
Chem. Commun.
1998,
877
9
Song CE.
Roh EJ.
Chem. Commun.
2000,
837
10a
Yao Q.
Zhang Y.
Angew. Chem. Int. Ed.
2003,
42:
3395
10b
Audic N.
Clavier H.
Mauduit M.
Guillemin J.-C.
J. Am. Chem. Soc.
2003,
125:
9248
11a
Lee S.
Zhang YJ.
Piao JY.
Yoon H.
Song CE.
Choi JH.
Hong J.
Chem. Commun.
2003,
2624
11b
Geldbach TJ.
Dyson PJ.
J. Am. Chem. Soc.
2004,
126:
8114
12
Baleizão C.
Gigante B.
Garcia H.
Corma A.
Tetrahedron Lett.
2003,
44:
6813
13a
Brasse CC.
Englert U.
Salzer A.
Organometallics
2000,
19:
3818
13b
Favre F.
Olivier-Bourbigou H.
Commereuc D.
Saussine L.
Chem. Commun.
2001,
1360
13c
Bronger RPJ.
Silva SM.
Kamer PCJ.
van Leeuwen PWNM.
J. Chem. Soc., Dalton Trans.
2004,
1590
14
Sirieix J.
Ossberger M.
Betzemeier B.
Knochel P.
Synlett
2000,
1613
15a
Xiao J.-C.
Twamley B.
Shreeve JM.
Org. Lett.
2004,
6:
3845
15b
Corma A.
García H.
Leyva A.
Tetrahedron
2004,
60:
8553
16
Zhao D.
Fei Z.
Geldbach TJ.
Scopelliti R.
Dyson PJ.
J. Am. Chem. Soc.
2004,
126:
15876
17 A similar procedure for the synthesis of aminopropyl-type ionic liquid has been reported: Bates ED.
Mayton RD.
Ntai I.
Davis JH.
J. Am. Chem. Soc.
2002,
124:
926
18
Synthesis of Imidazolium-Tagged Ligand(3).
A mixture of salicylaldehyde (1.22 g, 10 mmol), 2 (2.71 g, 10 mmol) and ionic liquid [bmim][PF6] (2.84 g, 10 mmol) was stirred at r.t. for 1 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with EtOH (20 mL). The precipitate was then filtered and dried to afford 3.01 g (80% yield) of ligand 3 as a pale yellow solid; mp 129-130 °C. FT-IR (KBr): νmax = 3416, 3152, 3093, 2914, 2867, 1637, 1618, 1568, 1505, 1470, 1287, 1163, 1100, 848 cm-1. 1H NMR (500 MHz, CD3COCD3): δ = 4.01 (s, 3 H, CH
3), 4.18 (t, 2 H, J
1 = 5.81 Hz, J
2 = 5.49 Hz, NCH
2), 4.80 (t, 2 H, J
1 = 5.64 Hz, J
2 = 5.83 Hz, NCH
2), 6.83-7.33 (m, 4 H, Ph), 7.70 (s, 1 H, NCH), 7.80 (s, 1 H, NCH), 8.55 [s, 1 H, N(H)CN], 9.10 (s, 1 H, CH), 12.60 (s, 1 H, OH).
19
Synthesis of Ionic Liquid-Grafted Mn(III)-Schiff Base Complex(4).
To a solution of ligand 3 (0.50 g, 1.30 mmol) in EtOH (20 mL) was added Mn(OAc)2·4H2O (0.16 g, 0.65 mmol). After 4 h of refluxing, 0.04 g of LiCl (0.65 mmol) was added and the reaction mixture was further refluxed for 2 h until the starting material had been completely consumed as judged by TLC. On completion of the reaction, the reaction mixture was cooled to r.t. The precipitate was collected by filtration, washed with EtOH (10 mL), and dried to give compound 4 as brown powder (0.43 g, 77% yield). FT-IR (KBr): νmax = 3167, 3110, 2976, 1611, 1545, 1478, 1439, 1136, 835, 754, 634, 472 cm-1. 1H NMR (500 MHz, DMSO-d
6): δ = 4.00 (s, 3 H, CH
3), 4.15 (t, 2 H, J
1
= 5.76 Hz, J
2
= 5.70 Hz, NCH
2), 4.75 (t, 2 H, J
1
= 5.73 Hz, J
2
= 5.86 Hz, NCH
2), 6.85-7.35 (m, 4 H, Ph), 7.65 (s, 1 H, NCH), 7.75 (s, 1 H, NCH), 8.50 [s, 1 H, N(H)CN], 9.01 (s, 1 H, CH). MS (ESI): m/e (%) = 693 (8), 360 (50), 319 (80), 229 (100). Anal. Calcd for C26H30N6O2MnClP2F12: C, 37.20; H, 3.60; N, 10.02. Found: C, 37.13; H, 3.52; N, 9.91.
20
General Procedure for the Epoxidation of Chalcones.
To a well-stirred solution of chalcone (1 mmol), NMO (0.17 g, 1.5 mmol) and catalyst 4 (8 mg, 0.01 mmol) in MeCN (10 mL) at -25 °C was added MCPBA (0.26 g, 1.5 mmol) in four equal portions over a 2-min period. The homogeneous mixture was stirred at -25 °C until chalcone had been completely consumed (monitored by TLC), followed by removal of MeCN on a rotary evaporator. The residue was then extracted with Et2O (3 × 10 mL). The combined extracts were washed with sat. Na2SO3 (3 × 10 mL), dried over Na2SO4, filtered, and concentrated to afford essentially pure products.
Compound 6f: mp 138-139 °C. FT-IR (KBr): νmax 3112, 3045, 1672, 1600, 1519, 1487, 1408, 1358, 1215, 1089, 1036, 864 cm-1. 1H NMR (500 MHz, CD3COCD3): δ = 7.43-7.60 (m, 4 H, Ph), 7.45 (d, J = 15.7 Hz, 1 H, CH-CH), 7.80 (d, J = 15.7 Hz, 1 H, CH-CH), 8.15-8.35 (m, 4 H, Ph). MS (GC-MS): m/z (%) = 303 (1), 287 (70), 252 (100), 207 (15), 179 (25), 165 (45), 102 (30), 76 (20).
Compound 6g: mp 188-191 °C. FT-IR (KBr): νmax = 3364, 3171, 3045, 2972, 1626, 1540, 1328, 1235, 1149, 844 cm-1. 1H NMR (500 MHz, CD3COCD3): δ = 2.95 [s, 6 H, N(CH3)2], 6.90 (d, J = 15.5 Hz, 1 H, CH-CH), 7.65-7.57 (m, 4 H, Ph), 7.80 (d, J = 15.5 Hz, 1 H, CH-CH), 8.25-8.35 (m, 4 H, Ph). MS (GC-MS): m/z (%) = 312 (1), 296 (100), 250 (25), 207 (3), 179 (25), 165 (20), 105 (10), 76 (10).
Compound 6h: mp 212-213 °C. FT-IR (KBr): νmax = 3112, 2999, 2906, 1646, 1586, 1520, 1493, 1448, 1334, 1202, 1103, 1036, 924 cm-1. 1H NMR (500 MHz, CD3COCD3): δ = 6.01 (s, 2 H, OCH
2O), 6.82-7.25 (m, 3 H, Ph), 7.30 (d, J = 15.5 Hz, 1 H, CH-CH), 7.75 (d, J = 15.5 Hz, 1 H, CH-CH), 8.15-8.35 (m, 4 H, Ph). MS (GC-MS): m/z (%) = 313 (1), 297 (100), 250 (25), 207(5), 175 (25), 145 (30), 105 (8), 76 (10).