Abstract
Chromium trioxide oxidation of cyclohexenecarbonitrile efficiently provides analytically
pure 3-oxocyclohex-1-ene-1-carbonitrile. The procedure is described in detail, providing
a very reliable, one-step synthesis of a highly versatile oxonitrile.
Key words
oxonitrile - nitrile - oxidation - synthesis
References
<A NAME="RZ09105SS-1A">1a </A>
Cantrell TS.
Tetrahedron
1971,
27:
1227
<A NAME="RZ09105SS-1B">1b </A>
Agosta WC.
Lowrance WW.
Tetrahedron Lett.
1969,
3053
<A NAME="RZ09105SS-2">2 </A>
Serebryakov EP.
Kulomzina-Pletneva SD.
Margaryan AK.
Tetrahedron
1979,
35:
77
<A NAME="RZ09105SS-3">3 </A>
Yang WQ.
Chen SZ.
Huang L.
Chin. Chem. Lett.
1998,
9:
233 ; Chem. Abstr.
1999,
131:
736759
<A NAME="RZ09105SS-4">4 </A>
Fleming FF.
Zhang Z.
Wang Q.
Steward OW.
Angew. Chem. Int. Ed.
2004,
43:
1126
<A NAME="RZ09105SS-5">5 </A>
Fleming FF.
Wang Q.
Steward OW.
J. Org. Chem.
2003,
68:
4235
<A NAME="RZ09105SS-6">6 </A>
Fleming FF.
Zhang Z.
Wei G.
Steward OW.
Org. Lett.
2005,
7:
447
<A NAME="RZ09105SS-7A">7a </A>
Wang Y.
Doering WVE.
Staples RJ.
J. Chem. Crystallogr.
1999,
29:
977
<A NAME="RZ09105SS-7B">7b </A>
Cronyn MW.
Goodrich JE.
J. Am. Chem. Soc.
1952,
74:
3331
<A NAME="RZ09105SS-8">8 </A>
Agosta WC.
Lowrance WW.
J. Org. Chem.
1970,
35:
3851
<A NAME="RZ09105SS-9">9 </A>
Available from Organometallics Inc.
<A NAME="RZ09105SS-10">10 </A>
Nakai T.
Tomooka K. In
Encyclopedia of Reagents for Organic Synthesis
Vol. 3:
Paquette LA.
Wiley;
Chichester:
1995.
p.1779
<A NAME="RZ09105SS-11">11 </A>
Nicolaou KC.
Gray DLF.
Montagnon T.
Harrison ST.
Angew. Chem. Int. Ed.
2002,
41:
996
<A NAME="RZ09105SS-12">12 </A>
Zimmerman HE.
Pasteris RJ.
J. Org. Chem.
1980,
45:
4864
<A NAME="RZ09105SS-13A">13a </A>
Johnson JN. In
Encyclopedia of Reagents for Organic Synthesis
Vol. 2:
Paquette LA.
Wiley;
Chichester:
1995.
p.1275-1277
<A NAME="RZ09105SS-13B">13b </A>
Lee TV. In
Comprehensive Organic Synthesis
Vol. 7:
Fleming I.
Trost BM.
Pergamon;
Oxford:
1991.
p.291-303
<A NAME="RZ09105SS-13C">13c </A>
Salmond WG.
Barta MA.
Havens JL.
J. Org. Chem.
1978,
43:
2057
<A NAME="RZ09105SS-14">14 </A>
Mousseron M.
Jacquier R.
Fontaine A.
Zagdoun R.
Bull. Soc. Chim. Fr.
1954,
1247
<A NAME="RZ09105SS-15">15 </A>
Kurihara T.
Miki M.
Yoneda R.
Harusawa S.
Chem. Pharm. Bull.
1986,
34:
2747
<A NAME="RZ09105SS-16">16 </A> Attempts to optimize the selenium dioxide oxidation of 1 afforded low yields of 2 despite excellent results with related unsaturated esters:
Bestmann HJ.
Schobert R.
Angew. Chem., Int. Ed. Engl.
1985,
24:
791
<A NAME="RZ09105SS-17">17 </A>
Yu J.-Q.
Wu H.-C.
Corey EJ.
Org. Lett.
2005,
7:
1415
<A NAME="RZ09105SS-18A">18a </A> Attempted oxidation with hydrogen peroxide and chromium hexacarbonyl is ineffective:
Pearson AJ.
Chen Y.-S.
Han GR.
Hsu S.-Y.
Ray T.
J. Chem. Soc., Perkin Trans. 1
1985,
267
<A NAME="RZ09105SS-18B">18b </A>
The lack of oxidation may be due to competitive metal ligation of the nitrile as occurs
with dirhodium(II) caprolactamate: Doyle M. P. personal communication.
<A NAME="RZ09105SS-18C">18c </A> For a related oxidation see:
Catino AJ.
Forslund RE.
Doyle MP.
J. Am. Chem. Soc.
2004,
126:
13622
<A NAME="RZ09105SS-19">19 </A>
Assaying several different solvent mixtures identified CH2 Cl2 -hexanes (1.5:1) as optimal, although a stepped EtOAc-hexanes gradient (3:17, 1:4,
1:3) permitted isolation of 2.30 g of 2 in 64% yield.