References
<A NAME="RU14605ST-1A">1a</A>
Modern Aldol Reactions
Vol. 2:
Mahrwald R.
Wiley-VCH;
Weinheim Germany:
2004.
<A NAME="RU14605ST-1B">1b</A>
Miura K.
Hosomi A. In Main Group Metals in Organic Synthesis
Vol. 2:
Yamamoto H.
Oshima K.
Wiley-VCH;
Weinheim Germany:
2004.
Chap. 10.
p.409
<A NAME="RU14605ST-1C">1c</A>
Gennari C. In Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Chap. 2.4.
p.629
<A NAME="RU14605ST-2A">2a</A>
Mukaiyama T.
Narasaka K.
Banno K.
Chem. Lett.
1973,
1011
<A NAME="RU14605ST-2B">2b</A>
Mukaiyama T.
Banno K.
Narasaka K.
J. Am. Chem. Soc.
1974,
96:
7503
<A NAME="RU14605ST-3A">3a</A>
Noyori R.
Yokoyama K.
Sakata J.
Kuwajima I.
Nakamura E.
Shimizu M.
J. Am. Chem. Soc.
1977,
99:
1265
<A NAME="RU14605ST-3B">3b</A>
Nakamura E.
Shimizu M.
Kuwajima I.
Sakata J.
Yokoyama K.
Noyori R.
J. Org. Chem.
1983,
48:
932
<A NAME="RU14605ST-3C">3c</A>
Noyori R.
Nishida I.
Sakata J.
J. Am. Chem. Soc.
1983,
105:
1598
<A NAME="RU14605ST-4A">4a</A>
Denmark SE.
Winter SBD.
Su X.
Wong K.-T.
J. Am. Chem. Soc.
1996,
118:
7404
<A NAME="RU14605ST-4B">4b</A>
Denmark SE.
Stavenger RA.
Acc. Chem. Res.
2000,
33:
432 ; and references cited therein
<A NAME="RU14605ST-5A">5a</A>
Fujisawa H.
Mukaiyama T.
Chem. Lett.
2002,
182
<A NAME="RU14605ST-5B">5b</A>
Nakagawa T.
Fujisawa H.
Mukaiyama T.
Chem. Lett.
2004,
33:
92 ; and references cited therein
<A NAME="RU14605ST-6">6</A>
Miura K.
Nakagawa T.
Hosomi A.
J. Am. Chem. Soc.
2002,
124:
536
Related works:
<A NAME="RU14605ST-7A">7a</A>
Miura K.
Tamaki K.
Nakagawa T.
Hosomi A.
Angew. Chem. Int. Ed.
2000,
39:
1958
<A NAME="RU14605ST-7B">7b</A>
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
<A NAME="RU14605ST-8">8</A>
Denmark SE.
Fan Y.
J. Am. Chem. Soc.
2002,
124:
4233
<A NAME="RU14605ST-9">9</A>
Oisaki K.
Suto Y.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
5644
For the fluoride ion-catalyzed aldol reaction of ethyl trimethylsilylacetate, see:
<A NAME="RU14605ST-10A">10a</A>
Nakamura E.
Shimizu M.
Kuwajima I.
Tetrahedron Lett.
1976,
1699
<A NAME="RU14605ST-10B">10b</A>
Nakamura E.
Hashimoto K.
Kuwajima I.
Tetrahedron Lett.
1978,
2079
α-DMS-esters 1 can be easily prepared from the corresponding esters by deprotonation with LiNi-Pr2 followed by silylation with Me2SiHCl. See:
<A NAME="RU14605ST-11A">11a</A>
Miura K.
Sato H.
Tamaki K.
Ito H.
Hosomi A.
Tetrahedron Lett.
1998,
39:
2585
<A NAME="RU14605ST-11B">11b</A>
Kaimakliotis C.
Fry AJ.
J. Org. Chem.
2003,
68:
9893
<A NAME="RU14605ST-11C">11c</A>
Typical Procedure for the Preparation of α-DMS-esters 1
Under N2 atmosphere, n-BuLi (1.61 M in hexane, 62 mL, 100 mmol) was added to a solution of i-Pr2NH (14 mL, 100 mmol) in THF (100 mL) over 5 min at 0 °C. After 10 min, the mixture
was cooled to -78 °C. Then, EtOAc (9.3 mL, 95 mmol) was added to the solution of LDA
over 5 min. After 2 h, the reaction mixture was treated with chlorodimethyl-silane
(12.2 mL, 110 mmol) and gradually warmed to r.t. over 12 h. The resultant mixture
was diluted with dry pentane (50 mL) and filtered through Celite®. After evaporation of the filtrate, the residual oil was diluted with dry pentane
(50 mL) again, filtered through Celite®, and evaporated. Purification of the crude product by distillation gave 1a (9.2 g, 63 mmol) in 66% yield.
Compound 1a: bp 58-60 °C (180 Torr). IR (neat): 1669 (C=O), 1253, 1205 cm-1. 1H NMR (CDCl3): δ = 0.20 (d, J = 3.6 Hz, 6 H), 1.23 (t, J = 6.9 Hz, 3 H), 1.96 (d, J = 3.3 Hz, 2 H), 4.06 (sept, d, J = 3.6, 3.3 Hz, 1 H), 4.10 (q, J = 6.9 Hz, 2 H). 13C NMR (CDCl3): δ = -4.36 (CH3 × 2), 14.09 (CH3), 24.08 (CH2), 59.91 (CH2), 172.54 (C). Anal. Calcd for C6H14O2Si (%): C, 49.53; H, 9.69. Found: C, 49.27; H, 9.65.
<A NAME="RU14605ST-12">12</A>
General Procedure for the Aldol Reaction of 1 with Aldehydes 2
Under the atmosphere, dry LiCl (5.5 mg, 0.13 mmol) was added to a two-necked, round-bottomed
flask (10 mL), which was connected with a nitrogen balloon. After introduction of
nitrogen, DMF (1.0 mL) was added to the flask. The mixture was warmed to 30 °C under
stirring. After 10 min, 2 (0.50 mmol) and 1 (0.60 mmol) were added to the mixture. After being stirred for 5 h, the reaction
mixture was treated with 2 M aq HCl (1 mL) for 5 min and neutralized with sat. aq
NaHCO3. The aqueous mixture was extracted with EtOAc (3 × 10 mL). The extract was dried
over Na2SO4 and evaporated. The crude product was purified by silica gel column chromatography.
The Reformatsky reaction of ethyl bromoacetate with 5g shows much lower stereoselectivity toward equatorial attack. See:
<A NAME="RU14605ST-13A">13a</A>
Screttas CG.
Smonou IC.
J. Org. Chem.
1988,
53:
893
<A NAME="RU14605ST-13B">13b</A>
Pansard J.
Gaudemar M.
Bull. Soc. Chim. Fr.
1973,
3472, Pt. 2
Pioneer works:
<A NAME="RU14605ST-14A">14a</A>
Narasaka K.
Soai K.
Mukaiyama T.
Chem. Lett.
1974,
1223
<A NAME="RU14605ST-14B">14b</A>
Narasaka K.
Soai K.
Aikawa K.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
1976,
49:
779
Recent reports on the Lewis acid-catalyzed reactions:
<A NAME="RU14605ST-15A">15a</A>
Ishihara K.
Hanaki N.
Funahashi M.
Miyata M.
Yamamoto H.
Bull. Chem. Soc. Jpn.
1995,
68:
1721
<A NAME="RU14605ST-15B">15b</A>
Chen J.
Sakamoto K.
Orita A.
Otera J.
Tetrahedron
1998,
54:
8411
<A NAME="RU14605ST-15C">15c</A>
Marx A.
Yamamoto H.
Angew. Chem. Int. Ed.
2000,
39:
178
For asymmetric reactions, see:
<A NAME="RU14605ST-15D">15d</A>
Kobayashi S.
Suda S.
Yamada M.
Mukaiyama T.
Chem. Lett.
1994,
97
<A NAME="RU14605ST-15E">15e</A>
Bernardi A.
Colombo G.
Scolastico C.
Tetrahedron Lett.
1996,
37:
8921
<A NAME="RU14605ST-15F">15f</A>
Kitajima H.
Katsuki T.
Synlett
1997,
568
<A NAME="RU14605ST-15G">15g</A>
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J. Am. Chem. Soc.
2001,
123:
4480
Lewis base catalyzed reactions:
<A NAME="RU14605ST-16A">16a</A>
RajanBabu TV.
J. Org. Chem.
1984,
49:
2083
<A NAME="RU14605ST-16B">16b</A>
Mukaiyama T.
Nakagawa T.
Fujisawa H.
Chem. Lett.
2003,
32:
56
<A NAME="RU14605ST-16C">16c</A>
Nakagawa T.
Fujisawa H.
Nagata Y.
Mukaiyama T.
Chem. Lett.
2004,
33:
1016
<A NAME="RU14605ST-16D">16d</A>
Mukaiyama T.
Tozawa T.
Fujisawa H.
Chem. Lett.
2004,
33:
1410
<A NAME="RU14605ST-16E">16e</A>
Tozawa T.
Fujisawa H.
Mukaiyama T.
Chem. Lett.
2004,
33:
1454
<A NAME="RU14605ST-16F">16f</A>
Tozawa T.
Yamane Y.
Mukaiyama T.
Chem. Lett.
2005,
34:
514
<A NAME="RU14605ST-16G">16g</A>
Nakagawa T.
Fujisawa H.
Nagata Y.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2005,
78:
236
Aldol reactions of α-enones:
<A NAME="RU14605ST-17A">17a</A>
Hanyuda K.
Hirai K.
Nakai T.
Synlett
1997,
31
<A NAME="RU14605ST-17B">17b</A>
Braun M.
Mai B.
Ridder D.
Eur. J. Org. Chem.
2001,
3155
<A NAME="RU14605ST-17C">17c</A>
Mitani M.
Ishimoto K.
Koyama R.
Chem. Lett.
2002,
1142
<A NAME="RU14605ST-18">18</A> The bond dissociation energy of Si-Cl in Me3SiCl (472 kJ/mol) is larger than that of Si-Br in Me3SiBr (402 kJ/mol). See:
Walsh R. In The Chemistry of Organic Silicon Compounds
Vol. 1:
Patai S.
Rappoport Z.
Wiley;
Chichester UK:
1989.
Chap. 5.
p.371
<A NAME="RU14605ST-19">19</A>
As shown in Table
[3]
, the reaction of 1a with 8a proceeded efficiently irrespective of the metal chloride used. This observation may
be due to higher coordinating ability (Lewis basicity) of α-enones, which allows carbonyl
activation even with less Lewis acidic metal ions. For the coordinating ability of
α-enones, see ref. 17a.