Zusammenfassung
Die Entwicklung neuer Ansätze zur medikamentösen Behandlung von Depressionen hat in
den vergangenen Jahren kaum Fortschritte gemacht, und trotz intensivster Bemühungen
konnte die Pathophysiologie von depressiven Erkrankungen nicht vollständig aufgeklärt
werden. Inzwischen hat sich jedoch in der neurobiologisch orientierten Psychiatrie
die Vorstellung durchgesetzt, dass depressive Erkrankungen nicht nur als eine Störung
des zentralnervösen Neurotransmitter-Stoffwechsels, sondern auch als Beeinträchtigung
grundlegender neuroplastischer Prozesse zu verstehen sind. Mit der Überlegung, dass
nicht nur Nerven-, sondern auch Gliazellen an neuropsychiatrischen Erkrankungen beteiligt
sind, eröffnen sich neue Erklärungsmodelle, die möglicherweise auch in verbesserte
Therapieformen münden könnten.
Summary
Despite extensive investigations there was little success in recent years with respect
to an improvement of therapies for depressive disorders and the understanding of the
etiology and pathophysiology of the disorders.
A current hypothesis postulates that depression is not only related to dysfunctioning
of central nervous neurotransmitter systems but may also be related to impairments
of neural plasticity. The idea that both neurons and glia cells are involved in the
pathophysiology of depressive disorders provides a new and stimulating approach also
for the development of new treatment strategies.
Key Words
Neurogenesis - hippocampus - astrocytes - antidepressants
Literatur
- 1
Alfonso J, Frasch AC, Flügge G.
Chronic stress, depression and antidepressants: Effects on gene transcription in the
hippocampus.
Rev Neurosci.
2005;
16
43-56
- 2
Altman J.
Are new neurons formed in the brains of adult mammals?.
Science.
1962;
135
1127-1128
- 3 Cajal SR. Degeneration and regeneration of the nervous system. London, Oxford University
Press 1928: 750
- 4
Czéh B, Michaelis T. et al. .
Stress-induced changes in cerebral metabolites, hippocampal volume and cell proliferation
are prevented by antidepressant treatment with tianeptine.
Proc Natl Acad Sci USA.
2001;
98
12796-12801
- 5
De Kloet ER, Vreugdenhil E. et al. .
Brain corticosteroid receptor balance in health and disease.
Endocr Rev.
1998;
19
269-301
- 6
D'Sa C, Duman RS.
Antidepressants and neuroplasticity.
Bipolar Disord.
2002;
4
183-194
- 7
Fuchs E, Czeh B. et al. .
Alterations of neuroplasticity in depression: the hippocampus and beyond.
Eur Neuropsychopharmacol.
2004;
14
S481-S490
- 8
Fuchs E, Gould E.
In vivo neurogenesis in the adult brain: regulation and functional implications.
Eur J Neurosci.
2002;
12
2211-2214
- 9
Gage FH.
Structural plasticity: cause, result, or correlate of depression.
Biol Psychiatry.
2000;
48
713-714
- 10
Henn FA, Vollmayr B.
Neurogenesis and depression: etiology or epiphenomenon?.
Biol Psychiatry.
2004;
56
146-150
- 11
Magariños AM, McEwen BS. et al. .
Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal
neurons in subordinate tree shrews.
J Neurosci.
1996;
16
3534-3540
- 12
Manji HK, Drevets WC, Charney DS.
The cellular neurobiology of depression.
Nat Med.
2001;
7
541-547
- 13
McEwen BS.
Stress and hippocampal plasticity.
Annu Rev Neurosci.
1999;
22
105-122
- 14
Murphy DL, Lerner A. et al. .
Serotonin transporter: gene, genetic disorders, and pharmacogenetics.
Mol Interv.
2004;
4
109-123
- 15
Nowakowski RS, Llewin SB, Miller MW.
Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle
and the DNA-synthetic phase for an anatomically defined population.
J Neurocytol.
1989;
18
311-318
- 16
Rajkowska G.
Postmortem studies in mood disorders indicate altered numbers of neurons and glial
cells.
Biol Psychiatry.
2000;
48
766-777
- 17
Sapolsky RM.
Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.
Arch Gen Psychiatry.
2000;
57
925-935
- 18
Schinder AF, Gage FH.
A hypothesis about the role of adult neurogenesis in hippocampal function.
Physiology.
2004;
9
253-261
- 19
Sheline YI, Gado MH, Kraemer HC.
Untreated depression and hippocampal volume loss.
Am J Psychiatry.
2003;
160
1516-1518
- 20
Slezak M, Pfrieger FW.
New roles for astrocytes: Regulation of CNS synaptogenesis.
TINS.
2003;
26
531-535
- 21
Starkman MN, Giordani B. et al. .
Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's
disease.
Biol Psychiatry.
1999;
46
1595-1602
- 22
Steiner B, Kronenberg G. et al. .
Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis
in mice.
Glia.
2004;
46
41-52
- 23
van der Hart MG, Czéh B. et al. .
Substance P receptor antagonist and clomipramine prevent stress-induced alterations
in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume.
Mol Psychiatry.
2002;
7
933-941
Korrespondenzadresse:
Prof. Dr. Eberhard Fuchs
PD Dr. Gabriele Flügge
Labor für Klinische Neurobiologie Deutsches Primatenzentrum
Kellnerweg 4
37077 Göttingen
Email: efuchs@gwdg.de
Email: gfluegg@gwdg.de