Abstract
N -(2-Benzyloxycarbonyl)phenyl ketenimines undergo a thermally induced cyclization to
give 2-substituted 4H -3,1-benzoxazin-4-ones. These processes involve the formation of a new carbon-oxygen
bond and the migration of the benzyl group from the oxygen atom of the benzyloxy unit
at the ester function to the terminal carbon atom of the ketenimine fragment.
Key words
azides - ketenimines - cyclizations - rearrangements - benzoxazinones
References
<A NAME="RZ06305SS-1">1 </A>
Mayama S.
Tani T.
Tetrahedron Lett.
1981,
22:
2103
<A NAME="RZ06305SS-2A">2a </A>
Bouillant M.-L.
Favre-Bonvin J.
Ricci P.
Tetrahedron Lett.
1983,
24:
51
<A NAME="RZ06305SS-2B">2b </A>
Ponchet M.
Martín-Tanguy J.
Marais A.
Poupet A.
Phytochemistry
1984,
23:
1901
<A NAME="RZ06305SS-3">3 </A>
Niemann GJ.
Liem J.
van der Kerk-van Hoof A.
Niessen WMA.
Phytochemistry
1992,
31:
3761
<A NAME="RZ06305SS-4">4 </A>
Teshima T.
Griffin JC.
Powers JC.
J. Biol. Chem.
1982,
257:
5085
<A NAME="RZ06305SS-5A">5a </A>
Alazard R.
Béchet J.-J.
Dupaix A.
Yon J.
Biochim. Biophys. Acta
1973,
309:
379
<A NAME="RZ06305SS-5B">5b </A>
Hedstrom L.
Moorman AR.
Dobbs J.
Abeles RH.
Biochemistry
1984,
23:
1753
<A NAME="RZ06305SS-6A">6a </A>
Stein RL.
Strimpler AM.
Viscarello BR.
Wildonger RA.
Mauger RC.
Trainor DA.
Biochemistry
1987,
26:
4126
<A NAME="RZ06305SS-6B">6b </A>
Krantz A.
Spencer RW.
Tam TF.
Liak TJ.
Copp LJ.
Thomas EM.
J. Med. Chem.
1990,
33:
464
<A NAME="RZ06305SS-7">7 </A>
Jarvest RL.
Parratt MJ.
Debouck CM.
Gorniak JG.
Jennings LJ.
Serafinowska HT.
Strickler JE.
Bioorg. Med. Chem. Lett.
1996,
6:
2463
<A NAME="RZ06305SS-8">8 </A>
Gilmore JL.
Hays SJ.
Caprathe BW.
Lee C.
Emmerling MR.
Michael W.
Jaén JC.
Bioorg. Med. Chem. Lett.
1996,
6:
679
<A NAME="RZ06305SS-9">9 </A>
Fenton G.
Newton CG.
Wyman BM.
Bagge P.
Dron DI.
Riddell D.
Jones GD.
J. Med. Chem.
1989,
32:
265
<A NAME="RZ06305SS-10A">10a </A>
Clémence F.
Martret OL.
Collard J.
J. Heterocycl. Chem.
1984,
21:
1345
<A NAME="RZ06305SS-10B">10b </A>
Ibrahim SS.
Abdel-Halim AM.
Gabr Y.
El-Edfawy S.
Abdel-Rahman RM.
J. Chem. Res., Synop.
1997,
154
<A NAME="RZ06305SS-11A">11a </A> For a review on the synthesis and reactivity of 4H -3,1-benzoxazin-4-ones bearing a carbon substituent at the 2 position see:
Coppola GM.
J. Heterocycl. Chem.
1999,
36:
563
<A NAME="RZ06305SS-11B">11b </A> For a review on the synthesis and reactivity of 4H -3,1-benzoxazin-4-ones bearing oxy, mercapto or amino functionalities at the 2-position
see:
Coppola GM.
J. Heterocycl. Chem.
2000,
37:
1369
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from anthranilic acids, see:
<A NAME="RZ06305SS-12A">12a </A>
Bain DI.
Smalley RK.
J. Chem. Soc. C
1968,
1593
<A NAME="RZ06305SS-12B">12b </A>
Bergman J.
Bergman S.
J. Org. Chem.
1985,
50:
1246
<A NAME="RZ06305SS-12C">12c </A>
Hauteville M.
Ponchet M.
Ricci P.
Favre-Bonvin J.
J. Heterocycl. Chem
1988,
25:
715
<A NAME="RZ06305SS-12D">12d </A>
Parkanyi C.
Yuan HL.
Stromberg BHE.
Evenzahav A.
J. Heterocycl. Chem.
1992,
29:
749
<A NAME="RZ06305SS-12E">12e </A>
Atkinson RS.
Coogan MP.
Cornell CL.
J. Chem. Soc., Perkin Trans. 1
1995,
157
<A NAME="RZ06305SS-12F">12f </A>
Khajavi MS.
Montazari N.
Hosseini SSS.
J. Chem. Res., Synop.
1997,
286
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from N -acylanthranilic acids see:
<A NAME="RZ06305SS-13A">13a </A>
Zentmyer DT.
Wagner EC.
J. Org. Chem.
1948,
13:
967
<A NAME="RZ06305SS-13B">13b </A>
Rabilloud G.
Sillion B.
J. Heterocycl. Chem.
1980,
17:
1065
<A NAME="RZ06305SS-13C">13c </A>
Conley RA.
Barton DL.
Stefanick SM.
Lam MM.
Lindabery GC.
Kasulanis CF.
Cesco-Cancian S.
Currey S.
Fabian AC.
Levine SD.
J. Heterocycl. Chem.
1995,
32:
761
<A NAME="RZ06305SS-13D">13d </A>
Marsham PR.
Jackman AL.
Barker AJ.
Boyle FT.
Pegg SJ.
Wardleworth JM.
Kimbell R.
O’Connor BM.
Calvert AH.
Hughes LR.
J. Med. Chem.
1995,
38:
994
<A NAME="RZ06305SS-13E">13e </A>
Mohapatra DK.
Datta A.
Synlett
1996,
1129
For examples of preparations of 2-substituted 4H -3,1-benzoxazin-4-ones from isatoic anhydride see:
<A NAME="RZ06305SS-14A">14a </A>
Minami T.
Ogata M.
Hirao I.
Tanaka M.
Agawa T.
Synthesis
1982,
231
<A NAME="RZ06305SS-14B">14b </A>
Tsubota M.
Hamashima M.
Heterocycles
1984,
21:
706
<A NAME="RZ06305SS-15">15 </A>
Larock RC.
Fellows CA.
J. Org. Chem.
1980,
45:
363
<A NAME="RZ06305SS-16">16 </A>
Cacchi S.
Fabrizi G.
Marinelli F.
Synlett
1996,
997
<A NAME="RZ06305SS-17">17 </A>
Larksarp C.
Alper H.
Org. Lett.
1999,
1:
1619
<A NAME="RZ06305SS-18A">18a </A>
Richman RJ.
Hassner A.
J. Org. Chem.
1968,
33:
2548
<A NAME="RZ06305SS-18B">18b </A>
Bristow THC.
Foster HE.
Hooper M.
J. Chem. Soc., Chem. Commun.
1974,
677
<A NAME="RZ06305SS-18C">18c </A>
Adam J.-M.
Winkler T.
Helv. Chim. Acta
1984,
67:
2186
<A NAME="RZ06305SS-19A">19a </A>
Smalley RK.
Suschitzky H.
Tanner EM.
Tetrahedron Lett.
1966,
29:
3465
<A NAME="RZ06305SS-19B">19b </A>
Crabtree HE.
Smalley RK.
Suschitzky H.
J. Chem. Soc. C
1968,
2730
<A NAME="RZ06305SS-19C">19c </A>
Archer JG.
Barker AJ.
Smalley RK.
J. Chem. Soc., Perkin Trans. 1
1973,
1169
<A NAME="RZ06305SS-20">20 </A>
Reddy GS.
Reddy KK.
Indian J. Chem., Sect. B
1978,
16:
1109
<A NAME="RZ06305SS-21">21 </A>
Molina P.
Conesa C.
Velasco MD.
Tetrahedron Lett.
1993,
34:
175
<A NAME="RZ06305SS-22A">22a </A>
Alajarín M.
Vidal A.
Tovar F.
Targets Heterocycl. Syst.
2000,
4:
293
<A NAME="RZ06305SS-22B">22b </A>
Barker MW.
McHenry WE. In
The Chemistry of Ketenes, Allenes, and Related Compounds
part 2:
Patai S.
Wiley Interscience;
Chichester:
1980.
p.701
<A NAME="RZ06305SS-22C">22c </A>
Dondoni A.
Heterocycles
1980,
14:
1547
<A NAME="RZ06305SS-23A">23a </A>
Molina P.
Vidal A.
Barquero I.
Synthesis
1996,
1199
<A NAME="RZ06305SS-23B">23b </A>
Molina P.
Vidal A.
Tovar F.
Synthesis
1997,
963 ; and references cited therein
<A NAME="RZ06305SS-24A">24a </A>
Alajarín M.
Molina P.
Vidal A.
Tetrahedron Lett.
1996,
37:
8945
<A NAME="RZ06305SS-24B">24b </A>
Alajarín M.
Vidal A.
Tovar F.
Arrieta A.
Lecea B.
Cossío FP.
Chem. Eur. J.
1999,
5:
1106
<A NAME="RZ06305SS-24C">24c </A>
Alajarín M.
Vidal A.
Tovar F.
Ramírez de Arellano MC.
Tetrahedron: Asymmetry
2004,
15:
489 ; and references cited therein
<A NAME="RZ06305SS-25">25 </A>
Alajarín M.
Vidal A.
Ortín M.-M.
Tovar F.
Synthesis
2002,
2393
<A NAME="RZ06305SS-26">26 </A>
Alajarín M.
Vidal A.
Tovar F.
Conesa C.
Tetrahedron Lett.
1999,
40:
6127
<A NAME="RZ06305SS-27">27 </A>
Alajarín M.
Vidal A.
Tovar F.
Tetrahedron Lett.
2000,
41:
7029
<A NAME="RZ06305SS-28A">28a </A>
Alajarín M.
Vidal A.
Ortín M.-M.
Org. Biomol. Chem.
2003,
1:
4282
<A NAME="RZ06305SS-28B">28b </A>
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
New J. Chem.
2004,
28:
570
<A NAME="RZ06305SS-28C">28c </A>
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
Synlett
2004,
991
<A NAME="RZ06305SS-29">29 </A>
Ketenimines 5 and 7 remained unaltered when heated in boiling toluene or boiling ortho -xylene.
<A NAME="RZ06305SS-30">30 </A>
In the thermal treatment of the N -(2-benzyloxycarbo-nyl)phenyl ketenimines 5 small amounts of the corres-ponding 4H -3,1-benzoxazin-4-ones 9 (Figure
[3 ]
) were always formed (8-13%). Probably, compounds 9 resulted from the hydrolysis of the ketenimine function in the N -(2-benzyloxycarbonyl)phenyl ketenimines 5 to yield the corresponding amides, followed by intramolecular nucleophilic displacement
of the benzyloxy group from the ester group by the carbonyl oxygen of the amide function.
We tried very hard to exclude water from the reaction mixtures, but probably we did
not succeed as the results were invariable, and small amounts of benzoxazinones 9 were always formed. Compounds 9a (R1 = H) and 9b (R1 = Cl) could not be separated from the 4H -3,1-benzoxazin-4-ones 6c [R1 = H; R2 = Ph; Ar = 4-MeOC6 H4 ] and 6f [R1 = Cl; R2 = Ph; Ar = 4-MeOC6 H3 ], respectively.
<A NAME="RZ06305SS-31">31 </A>
CCDC 264507 contains the supplementary crystallographic data for 6g . The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail:deposit@ccdc.cam.ac.uk).
<A NAME="RZ06305SS-32A">32a </A>
Pinhey JT.
Schaffner K.
Aust. J. Chem.
1968,
21:
2265
<A NAME="RZ06305SS-32B">32b </A>
Arnold RT.
Kulenovic ST.
J. Org. Chem.
1980,
45:
891
<A NAME="RZ06305SS-32C">32c </A>
Reinaud O.
Capdevielle P.
Maumy M.
Tetrahedron
1987,
43:
4167
<A NAME="RZ06305SS-32D">32d </A>
Andreichikov YS.
Gein VL.
Ivanenko OI.
Brigadnova EV.
Maslivets AN.
J. Org. Chem. USSR (Engl. Transl.)
1988,
24:
1007
<A NAME="RZ06305SS-32E">32e </A>
Burger K.
Gaa K.
Geith K.
Schierlinger C.
Synthesis
1989,
850
<A NAME="RZ06305SS-32F">32f </A>
West FG.
Naidu BN.
Tester RW.
J. Org. Chem.
1994,
59:
6892
<A NAME="RZ06305SS-32G">32g </A>
Desai VN.
Saha NN.
Dhavale DD.
J. Chem. Soc., Perkin Trans. 1
2000,
147
<A NAME="RZ06305SS-32H">32h </A>
Burger K.
Fuchs A.
Hennig L.
Helmreich B.
Greif D.
Monatsh. Chem.
2001,
132:
929
<A NAME="RZ06305SS-32I">32i </A>
Karche NP.
Jachak SM.
Dhavale DD.
J. Org. Chem.
2001,
66:
6323
<A NAME="RZ06305SS-33">33 </A> 2-Azidobenzoyl chloride (1a ) and 2-azido-5-chlorobenzoyl chloride (1b ) were both prepared following the experimental procedure described for 1a :
Porter TC.
Smalley RK.
Teguiche M.
Purwono B.
Synthesis
1997,
773
<A NAME="RZ06305SS-34">34 </A>
Taylor EC.
McKillop A.
Hawks GH.
Org. Synth.
1973,
52:
36
<A NAME="RZ06305SS-35">35 </A>
Pracejus H.
Wallura G.
J. Prakt. Chem.
1962,
19:
33