Synlett 2005(9): 1425-1428  
DOI: 10.1055/s-2005-869836
LETTER
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Cycloaddition on Carbohydrates for the Synthesis of New Bicyclic Oxazolidines Bearing a Quaternary Bridgehead

George Bashiardes*, Céline Cano, Bernard Mauzé
Département de Chimie, Equipe Methodologie et Synthèse de Biomolécules, SFA - CNRS UMR 6514, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
Fax: +33(5)49454588; e-Mail: george.bashiardes@univ-poitiers.fr;
Further Information

Publication History

Received 22 December 2004
Publication Date:
10 May 2005 (online)

Abstract

A new carbohydrate nitrone intramolecular cycloaddition reaction is described for the enantioselective synthesis of bicyclic oxazolidines. By choice of the precursor, the products possess a chiral quaternary bridgehead aryl substitution. Also described is the diverse synthesis of 6-keto and 6-alkenyl carbohydrates by a general approach. The overall protocol provides versatility through the possibility of introducing diverse reagents at several entry points.

14

It should be noted that this is a suitable entry point for introducing diversity, since hydroxylamines of multiple variation are very readily accessible.

15

Typical Procedure for the Synthesis of (3a S ,4 R ,5 S ,6 R ,7 S ,7a S )-1-methyl-3a-phenyloctahydrobenzo[ c ]isoxazole-4,5,6,7-tetraol Tetraacetate 12c.
Thermal conditions: in a two-necked, round-bottomed flask equipped with a magnetic stirring bar, a reflux condenser and a thermometer, NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv) was added to a solution of carbohydrate 10 (252 mg, 1.0·10-3 mol) and N-isopropylhydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv) in 80% aq EtOH (15 mL). The mixture was stirred under reflux during 48 h. After cooling and removal of the solvent under reduced pressure, Ac2O (0.6 mL), pyridine (1 mL), DMAP (cat.), and CH2Cl2 were added. The mixture was stirred at r.t. during 6 h. The mixture was then washed with 3 × 6 mL of H2O. The solvent was removed under reduced pressure and the resulting oil was purified by flash chromatography on silica gel (EtOAc-CH2Cl2, 20:80, R f = 0.36) to provide 12c in 61% yield as a yellowish oil.
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH 3 -CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J 7,7 = 13.9 Hz, J7-1 = 7.1 Hz, 1 H, H-7), 3.10 (d, J 7 ,7 = 13.9 Hz, 1 H, H-7′), 3.58-3.60 (m, 1 H, H-1), 5.00-5.60 (m, 4 H, H-2, H-3, H-4, H-5), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-7), 47.0 (C-8), 63.1 (C-1), 71.3 (C-2), 71.4, 71.5, 71.6 (C-3, C-4 et C-5), 86.5 (C-6), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9), 168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 s (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754 s, 703 s (arom. C-H) cm-1.
Compound 12a Major Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH 3 ), 2.27 (dd, J 8,8bis = 13.0 Hz, J 8,7a = 10.0 Hz, 1 H, H-8), 3.01 (d, J 8bis,8 = 13.0 Hz, 1 H, H-8bis), 3.60 (dd, J 7a,8 = 10.0 Hz, J 7a,7 = 2.0 Hz, 1 H, H-7a), 4.18 (d, J 3,3bis = 13.4 Hz, 1 H, H-3), 4.21 (d, J 3bis,3 = 13.4 Hz, 1 H, H-3bis), 5.11 (dd, J 7,6 = 8.8 Hz, J 7,7a = 2.0 Hz, 1 H, H-7), 5.31 (d, J 4,5 = 8.6 Hz, 1 H, H-4), 5.40 (dd, J 5,4 = 8.6 Hz, J 5,6 = 1.4 Hz, 1 H, H-5), 5.43 (dd, J 6,7 = 8.8 Hz, J 6,5 = 1.4 Hz, 1 H, H-6), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.6 (C-3), 62.9 (C-8), 63.9 (C-7a), 70.2 (C-7), 73.5, 73.6 (C-5, C-6), 74.1 (C-4), 87.0 (C-3a), 126.1, 128.0, 128.2, 128.6, 129.8 (C-10, C-11, C-12, C-13, C-14, C-16, C-17, C-18, C-19, C-20), 134.3 (C-9), 140.0 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O) ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701 s (arom. C-H) cm-1.
Compound 12a Minor Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH 3 ), 2.81 (dd, J 8,8bis = 13.8 Hz, J 8,7a = 6.7 Hz, 1 H, H-8), 3.19 (d, J 8bis,8 = 13.8 Hz, 1 H, H-8bis), 3.57 (d, J 3,3bis = 12.9 Hz, 1 H, H-3), 3.86 (dd, J 7a,8 = 6.7 Hz, J 7a,7 = 3.9 Hz, 1 H, H-7a), 3.86-3.96 (m, 2 H, H-6, H-4), 3.91 (d, J 3bis,3 = 12.9 Hz, 1 H, H-3bis), 5.04 (dd, J 5,4 = 4.1 Hz, J 5,6 = 1.3 Hz, 1 H, H-5), 5.17 (dd, J 7,7a = 3.9 Hz, J 7,6 = 3.8 Hz, 1 H, H-7), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.3 (C-3), 62.1 (C-8), 66.2 (C-7a), 71.9 (C-7), 72.4, 72.6 (C-4, C-6), 75.5 (C-5), 88.2 (C-3a), 126.7, 127.7, 127.8, 128.4, 128.9 (C-10, C-11, C-12, C-13, C-14, C-16, C-17, C-18, C-19, C-20), 135.8 (C-9), 142.1 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O) ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701 s (arom. C-H) cm-1.
Compound 12b:
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH 3 -CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J 3,3bis = 13.9 Hz, J 3-7a = 7.1 Hz, 1 H, H-3), 3.10 (d, J 3bis,3 = 13.9 Hz, 1 H, H-3bis), 3.58-3.60 (m, 1 H, H-7a), 5.00-5.60 (m, 4 H, H-4, H-5, H-6, H-7), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-3), 47.0 (C-8), 63.1 (C-7a), 71.3 (C-7), 71.4, 71.5, 71.6 (C-4, C-5, C-6), 86.5 (C-3a), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9), 168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 F (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754 s, 703 s (arom. C-H) cm-1.

17

Typical procedure for the synthesis of (3a S ,4 R ,5 S ,6 R ,7 S ,7a S )-1-methyl-3a-phenyloctahydrobenzo[c]isoxazole-4,5,6,7-tetraol tetraacetate 12c.
Microwave conditions: in a pyrex test tube (2 × 15), NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv), N-isopropyl-
hydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv), carbohydrate 10 (252 mg, 1.0·10-3 mol) and 80% aq EtOH (1 mL) were submitted to microwave irradiations (CEM Discover apparatus. Settings: 70 °C, 100 W) during 80 min. After cooling and the solvent evaporated under reduced pressure, the crude product was acetylated and purified as in Ref. 15.