Subscribe to RSS
DOI: 10.1055/s-2005-868503
PNA-Directed Triple-Helix Formation by N 7-Xanthine
Publication History
Publication Date:
29 April 2005 (online)

Abstract
We report the first example of alkylation of underivatized xanthine with chloroacetic acid to yield a separable mixture of N 7- and N 9-(methylenecarboxyl)xanthine and its conversion to a peptide nucleic acid monomer compatible with Fmoc-based oligomerization chemistry. Additionally, we have simultaneously prepared the N 7 - and N 9-PNA monomers of guanine by alkylation of 2-N-isobutyrylguanine which were subsequently separated. Molecular modeling of the nucleobase base triplets indicates that N 7-xanthine and N 7-guanine form isomorphous triplets with adenine and guanine, respectively. We also show that polyamides containing N 7-xanthine are compatible with triple-helix formation.
Key words
xanthine - peptide nucleic acid - isomorphous - triplex
- 1
Nielsen PE.Egholm M.Berg RH.Buchardt O. Science 1991, 254: 1497 - 2
Nielsen PE. Acc. Chem. Res. 1999, 32: 624 - 3
Griffith MC.Risen LM.Greig MJ.Lesnik EA.Sprankle KG.Griffey RH.Kiely JS.Freier SM. J. Am. Chem. Soc. 1995, 117: 831 - 4
Watson JD.Crick FH. Nature 1953, 171: 737 - 5
Hoogsteen K. Acta Crystallogr. 1963, 16: 907 - 6
Hunziker J.Priestly ES.Brunar H.Dervan PB. J. Am. Chem. Soc. 1995, 117: 2661 - 7
D’Costa M.Kumar VA.Ganesh KN. J. Org. Chem. 2003, 68: 4439 - 8
Egholm M.Christensen L.Duholm KL.Buchardt O.Coull J.Nielsen PE. Nucleic Acids Res. 1995, 23: 217 - 9 Molecular models were constructed using HyperChem 5.1 from existing crystallographic data. The xanthine triplet was initially geometry optimized using molecular mechanics (Amber force field) and subsequently refined by use semi-empirical methods (PM3), as previously described:
Fenyö R.Tímár Z.Pálinkó I.Penke B. J. Mol. Struc.-Theochem. 2000, 496: 101 - 10
Müller CE.Deters D.Dominik A.Pawlowski M. Synthesis 1998, 1428 - 11
Bridson PK.Richmond G.Yeh F. Synth. Commun. 1990, 20: 2459 - 12
Müller CE.Shi D.Manning M.Daly JW. J. Med. Chem. 1993, 36: 3341 - 13
Marzilli LG.Epps LA.Sorrell T.Kistenmacher TJ. J. Am. Chem. Soc. 1975, 97: 3351 - 14 For example:
Hoffmann MFH.Brückner AM.Hupp T.Engels B.Diederichsen U. Helv. Chim. Acta 2000, 83: 2580 -
15a
Sanjayan GJ.Pedireddi VR.Ganesh KN. Org. Lett. 2000, 2: 2825 -
15b
Timár Z.Bottka S.Kovács L.Penke B. Nucleosides Nucleotides 1999, 18: 1131 - 17
Seitz O.Köhler O. Chem.-Eur. J. 2001, 7: 3914 - 18
Heimer EP.Gallo-Torres HE.Felix AM.Ahmad M.Lambros TJ.Scheidl F.Meienhofer J. Int. J. Pept. Res. 1984, 23: 203 - 19
Honda M.Morita H.Nagakura I. J. Org. Chem. 1997, 62: 8932 - 21
Robins MJ.Zou R.Guo Z.Wnuk S. J. Org. Chem. 1996, 61: 9207 - 22
Timár Z.Kovács L.Kovács G.Schmél Z. J. Chem. Soc., Perkin Trans. 1 2000, 19 - 23 For PNA:
Dueholm KL.Egholm M.Behrens C.Christensen L.Hansen HF.Vulpius T.Petersen KH.Berg RH.Nielsen PE.Buchardt O. J. Org. Chem. 1994, 59: 5767 - 25
Osterman RM.McKittrick BA.Chan TM. Tetrahedron Lett. 1992, 33: 4867 - 28 Thermal denaturation was measured at strand concentration of 1.3 µM in base pairs with 150 mM NaCl, 10 mM Na2HPO4, 1 mM ETDA, pH 7.0 at a 2:1 PNA:RNA ratio. All transitions were well-behaved and monophasic. The first derivative method was used to estimate the Tm. The stoichiometry of binding was determined by the method of continuous variations:
Job P. Ann. Chim. (Paris) 1928, 9: 113
References
N 7- and N 9-xanthine acetic acids were separated by differential solubility in water, the N 7-derivative being less soluble. N 7-isomer: white solid, mp 320 °C (dec). 1H NMR (400 MHz, DMSO): δ = 13.30 (br s, 1 H), 11.61 (s, 1 H), 10.91 (s, 1 H), 7.91 (s, 1 H), 4.99 (s, 2 H). 13C NMR (100 MHz, DMSO): δ = 169.8, 156.3, 151.9, 149.6, 143.9, 107.3, 47.7. HRMS (EI): m/z calcd for C7H6N4O4: 210.0389; found: 210.0397. N 9-isomer: white solid, mp >290 °C (dec). 1H NMR (400 MHz, DMSO): δ = 10.82 (s, 1 H), 7.60 (s, 1 H), 4.84 (s, 2 H). 13C NMR (100 MHz, DMSO): δ = 170.1, 158.9, 152.2, 142.8, 138.5, 115.7, 48.4. HRMS (EI): m/z calcd for C7H6N4O4: 210.0389; found: 210.0451. N3-isomer: see ref. [11]
20Selected data.
Allyl ester precursor to 5: white solid, mp 168-170 °C (dec). 1H NMR (400 MHz, DMSO): δ = 11.53 (br s, 1 H), 10.87 (br s, 1 H), 7.87-7.20 (m, 10 H), 5.90 (m, 1 H), 5.38-5.09 (m, 4 H), 4.66-4.19 (m) and 4.09 major (s, 7 H), 3.46 major (m, minor rotamer overlapping with H2O), 3.09 minor (m, major rotamer overlapping with H2O). HRMS (ESI-TOF): m/z calcd for sodium adduct C29H28N6O7Na: 595.1917; found: 595.1912.
Compound 5: off-white solid, mp 162-164 °C (change in appearance), 205-208 °C (dec). 1H NMR (400 MHz, DMSO): δ = 12.81 (br s, 1 H), 11.58 major and 11.56 minor (1 H), 10.86 major and 10.84 minor (1 H), 7.88-7.28 (m, 10 H), 5.27 major and 5.07 minor (s, 2 H), 4.34-4.20 (m)and 3.98 major (s, 5 H), 3.43 major (m, minor rotamer overlapping with H2O), 3.10 minor (m, major rotamer overlapping with H2O). HRMS (ESI-TOF): m/z calcd for sodium adduct C26H24N6O7Na: 555.1604; found: 555.1602.
Data for 6 and 7.
Compound 6 (N
9-isomer): white solid, mp 310-331 °C. 1H NMR (400 MHz, DMSO): δ = 12.10 (s, 1 H), 11.66 (s, 1 H), 7.94 (s, 1 H), 4.87 (s, 2 H), 2.76 (sept, 3
J = 6.8 Hz, 1 H) 1.40 (s, 9 H), 1.09 (d, 3
J = 6.9 Hz, 6 H). 13C NMR (100 MHz, DMSO): δ = 180.9, 167.4, 155.5, 149.6, 148.8, 141.0, 120.3, 83.0, 45.5, 35.3, 28.4, 19.6. HRMS (EI): m/z calcd for C15H21N5O4: 335.15937; found: 335.15937.
Compound 7 (N
7-isomer): white solid, mp 202-204 °C. 1H NMR (400 MHz, DMSO): δ = 12.13 (s, 1 H), 11.56 (s, 1 H), 8.10 (s, 1 H), 5.06 (s, 2 H), 2.72 (sept, 3
J = 6.8 Hz, 1 H), 1.40 (s, 9 H), 1.10 (d, 3
J = 6.8 Hz, 6 H). 13C NMR (100 MHz, DMSO): δ = 180.7, 167.6, 157.5, 153.3, 147, 9, 145.5, 112.4, 82.7, 48.6, 35.4, 28.3, 19.6. HRMS (EI): m/z calcd for C15H21N5O4: 335.15937; found: 335.15937.
Data for 13 and 14.
Compound 13 (N
9-isomer): white solid, mp 234-235 °C. 1H NMR as reported in ref.
[22]
; HRMS (ESI-TOF): m/z calcd for sodium adduct C30H31N7O7Na: 624.2183; found: 624.2213.
Compound 14 (N
7-isomer): white solid, mp 188-190 °C (dec). 1H NMR (400 MHz, DMSO): δ = 12.13 (br s, 1 H), 11.59 major and 11.56 minor (s, 1 H), 8.18 minor and 8.15 major (s, 1 H), 7.87-717 (m, 10 H), 5.38 major and 5.20 minor (s, 2 H), 3.46-3.12 (m, 4 H), 2.71 (m, 1 H), 1.10 major and 1.05 minor (d, 3
J = 6.8 Hz, 6 H). HRMS (ESI-TOF): m/z calcd for sodium adduct C30H31N7O7Na: 624.2183; found: 624.2165.
Oligomers were synthesized on Rink amide resin by an ABI 433a peptide synthesizer at the 5 µmol scale according to the manufacturer-supplied cycles and purified by RP-HPLC.
Data for -T6-lys-NH2 (15) HRMS (MALDI-TOF): m/z calcd for C74H101N27O26: 1783.7411; found: 1784.6012.
Data for Ac-X6-lys-NH2 (16) HRMS (ESI-TOF): m/z calcd for C74H89N39O26: 1940.76; found: 1940.55 [MH+]