Abstract
Oxidative dimerization of primary alcohols with 2-butanone in the presence of an amino alcohol-based Ir bifunctional catalyst was accomplished for the first time. The reaction proceeds with 1-2 mol% of the catalyst and 0.3 mol equivalents of K2CO3 in 2-butanone at room temperature to give the corresponding dimeric esters in 30-93% yield.
Key words
alcohols - esters - hydrogen transfer - iridium catalyst - oxidative dimerization
References
1a
Mulzer J. In
Comprehensive Organic Functional Group Transformations
Vol. 5:
Katritzky AR.
Meth-Cohn O.
Rees CW.
Moody CJ.
Elsevier Science Ltd.;
Oxford:
1995.
p.121
1b
Larock RC.
Comprehensive Organic Transformations
VCH Publishers, Inc.;
New York:
1989.
p.835
1c
Hudlicky M.
Oxidations in Organic Chemistry
ACS Monograph Series, American Chemical Society;
Washington DC:
1990.
p.131
For recent examples of Tishchenko and related reactions, see:
2a
Ooi T.
Ohmatsu K.
Sasaki K.
Miura T.
Maruoka K.
Tetrahedron Lett.
2003,
44:
3191
2b
Gnanadesikan V.
Horiuchi Y.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
7782
2c For a recent review: Törmäkangas OP.
Koskinen AMP.
Recent Res. Dev. Org. Chem.
2001,
5:
225
3
Robertson GR.
Org. Synth., Coll. Vol. I
Wiley and Sons;
New York:
1941.
p.138
4
Al Neirabeyeh M.
Ziegler JC.
Gross B.
Caubère P.
Synthesis
1976,
811
5
Nwaukwa SO.
Keehn PM.
Tetrahedron Lett.
1982,
23:
35
6
Kageyama T.
Kawahara S.
Kitamura K.
Ueno Y.
Okawara M.
Chem. Lett.
1983,
1097
7
Takase K.
Masuda H.
Kai O.
Nishiyama Y.
Sakaguchi S.
Ishii Y.
Chem. Lett.
1995,
871
8
Bhar S.
Chaudhuri SK.
Tetrahedron
2003,
59:
3493
9
Merbouh N.
Bobbitt JM.
Brückner C.
J. Org. Chem.
2004,
69:
5116
10
Tohma H.
Maegawa T.
Kita Y.
Synlett
2003,
723
11
Nagashima H.
Tsuji J.
Chem. Lett.
1981,
1171
12
Blum Y.
Reshef D.
Shvo Y.
Tetrahedron Lett.
1981,
22:
1541
13a
Murahashi S.-I.
Ito K.
Naota T.
Maeda Y.
Tetrahedron Lett.
1981,
22:
5327
13b
Murahashi S.-I.
Naota T.
Ito K.
Maeda Y.
Taki H.
J. Org. Chem.
1987,
52:
4319
14
Tamaru Y.
Yamada Y.
Inoue K.
Yamamoto Y.
Yoshida Z.
J. Org. Chem.
1983,
48:
1286
15
Masuyama Y.
Takahashi M.
Kurusu Y.
Tetrahedron Lett.
1984,
25:
4417
16
Wang L.
Eguchi K.
Arai H.
Seiyama T.
Chem. Lett.
1986,
1173
17a
Suzuki T.
Morita K.
Tsuchida M.
Hiroi K.
Org. Lett.
2002,
4:
2361
17b
Suzuki T.
Morita K.
Matsuo Y.
Hiroi K.
Tetrahedron Lett.
2003,
44:
2003
17c
Suzuki T.
Morita K.
Tsuchida M.
Hiroi K.
J. Org. Chem.
2003,
68:
1601
Recent examples of hydrogen transfer reaction using Cp*Ir complexes, see:
18a
Mashima K.
Abe T.
Tani K.
Chem. Lett.
1998,
1199
18b
Murata K.
Ikariya T.
Noyori R.
J. Org. Chem.
1999,
64:
2186
18c
Ogo S.
Makihara N.
Watanabe Y.
Organometallics
1999,
18:
5470
18d
Ogo S.
Makihara N.
Kaneko Y.
Watanabe Y.
Organometallics
2001,
20:
4903
18e
Fujita K.
Furukawa S.
Yamaguchi R.
J. Organomet. Chem.
2002,
649:
289
18f
Fujita K.
Yamamoto K.
Yamaguchi R.
Org. Lett.
2002,
4:
2691
18g
Abura T.
Ogo S.
Watanabe Y.
Fukuzumi S.
J. Am. Chem. Soc.
2003,
125:
4149
18h
Fujita K.
Li Z.
Ozeki N.
Yamaguchi R.
Tetrahedron Lett.
2003,
44:
2687
18i
Fujita K.
Kitatsuji C.
Furukawa S.
Yamaguchi R.
Tetrahedron Lett.
2004,
45:
3215
18j
Fujita K.
Fujii T.
Yamaguchi R.
Org. Lett.
2004,
6:
3525
18k
Hanasaka F.
Fujita K.
Yamaguchi R.
Organometallics
2004,
23:
1490
19 Related oxidative lactonization of diols in the presence of acetone was reported by Murahashi et al., see ref. 13a.
20 The use of other bases, such as Na2CO3, Cs2CO3, KHCO3, and KOAc resulted in lower reactivity. Although the role of the K2CO3 is not clear at present, it might increase the nucleophilicity of 1 to the corresponding aldehyde for the formation of hemiacetal. For the mechanistic study of acid- and base-catalyzed formation of the hemiacetal, see: Sorensen PE.
Jencks WP.
J. Am. Chem. Soc.
1987,
109:
4675
21
General Procedure for the Oxidative Dimerization of 1.
A 10 mL test tube equipped with a magnetic stirring bar was charged with 42 mg (0.3 mmol) of K2CO3 and 1.0 mmol of alcohol under Ar. Then a solution of 11 mg (0.02 mmol, 2 mol%) of Ir complex 3 in butanone (0.24 mL, 2.7 mmol) was added to the above mixture and stirred at r.t. The mixture was passed through a short silica gel column (12 g, EtOAc) to remove the catalyst. The yields for the products of 2c and 2d were determined by gas chromatography using authentic samples and appropriate correction factors. The products of 2a, 2b, and 2d-m were purified by silica gel column chromatography (hexane-EtOAc).
22 Although TONs were not optimized at the moment, they were roughly calculated to be in range between 17 and 23 for most substrates [with single entry as high as 40 (entry 7)].
23 The mechanism of saturation is not clear at present. Partially saturated products were observed even without K2CO3 under a high-concentration condition (4.2 M). However, such saturated products were not observed with K2CO3 under a diluted condition (0.08 M). See also ref. 17c.