Synlett 2005(8): 1267-1270  
DOI: 10.1055/s-2005-868477
LETTER
© Georg Thieme Verlag Stuttgart · New York

Syntheses of (±)-α-Isokainic Acid and (±)-α-Dihydroallokainic Acid Using a Decarboxylative Ramberg-Bäcklund Reaction

David M. Hodgson*a, Shuji Hachisua, Mark D. Andrewsb
a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
Fax: +44(1865)275708; e-Mail: david.hodgson@chem.ox.ac.uk;
b Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK
Further Information

Publication History

Received 16 March 2005
Publication Date:
21 April 2005 (online)

Abstract

Total syntheses of (±)-α-isokainic acid and (±)-α-dihydroallokainic acid have been achieved via tandem radical addition-homoallylic rearrangement and a decarboxylative Ramberg-­Bäcklund reaction as the key steps.

    References

  • 1a Parsons AF. Tetrahedron  1996,  52:  4149 
  • 1b Moloney MG. Nat. Prod. Rep.  2002,  19:  597 
  • 1c Calaf R. Barlatier A. Maillard C. Balansard G. Garcon D. Plant. Med. Phytother.  1989,  23:  24 
  • 1d Calaf R. Barlatier A. Maillard C. Ollivier-Vidal E. Garcon D. Plant. Med. Phytother.  1989,  23:  16 
  • 2 Zaman L. Arakawa O. Shimosu A. Onoue Y. Nishio S. Shida Y. Noguchi T. Toxicon  1997,  35:  205 
  • 3 Hashimoto K. Shirahama H. Trends Org. Chem.  1991,  2:  1 
  • 4 Ni Y. Amarasinghe KKD. Ksebati B. Montgomery J. Org. Lett.  2003,  5:  3771 
  • 5a Honjo M. Yakugaku Zasshi  1957,  77:  598 ; Chem. Abstr. 1957, 51, 90648
  • 5b Miyamoto M. Honjo M. Sanno Y. Uchibayashi M. Tanaka K. Tatsuoka S. Yakugaku Zasshi  1957,  77:  586 ; Chem. Abstr. 1957, 51, 90645
  • 6 Hodgson DM. Hachisu S. Andrews MD. Org. Lett.  2005,  7:  815 
  • 7 Wayner DDM. Clark KB. Rauk A. Yu D. Armstrong DA. J. Am. Chem. Soc.  1997,  119:  8925 
  • 8a Wladislaw B. Marzorati L. Torres Russo VF. Zim MH. Di Vitta C. Tetrahedron Lett.  1995,  36:  8367 
  • 8b For a recent review, see: Taylor RJK. Casy G. Org. React.  2003,  62:  357 
  • 9 Leung-Toung R. Liu Y. Muchowski JM. Wu Y.-L. J. Org. Chem.  1998,  63:  3235 
  • 10a Laba VI. Polievktov MK. Prilezhaeva EN. Mairanovskii SG. Izv. Akad. Nauk. SSSR, Ser. Khim.  1969,  2149 ; Chem. Abstr. 1970, 72, 54654
  • 10b Nebois P. Kann N. Greene AE. J. Org. Chem.  1995,  60:  7690 
  • 12 Vacher B. Samat A. Allouche A. Laknifli A. Baldy A. Chanon M. Tetrahedron  1988,  44:  2925 
  • 13 Merbouh N. Bobbitt JM. Brückner C. J. Carbohydr. Chem.  2002,  21:  65 
  • 16 Hanessian S. Ninkovic S. J. Org. Chem.  1996,  61:  5418 
  • 17 Morimoto H. Yakugaku Zasshi  1955,  75:  916 ; Chem. Abstr. 1956, 50, 24089
  • 18 Hashimoto K. Konno K. Shirahama H. J. Org. Chem.  1996,  61:  4685 
  • 19 Sugawa T. Yakugaku Zasshi  1957,  77:  332 ; Chem. Abstr. 1957, 51, 62288
11

Only a trace of the epimeric adduct (1:13) arising from addition to the less accessible endo face of 7-azabicycle 12 was detected.

14

2-Azabicycle 14 (270 mg, 0.711 mmol) was dissolved in CH2Cl2 (200 mL), and the temperature was lowered to
-78 °C. A mixture of O3/O2 was bubbled through the solution until it turned blue, followed by O2 until the solution became colorless. Then, Ar was passed through the solution for 5 min, and Me2S (5 mL, 68 mmol) was added dropwise. The mixture was warmed to 20 °C and stirred for 1 h. The mixture was then concentrated in vacuo and the residue dissolved in Et2O (50 mL, the dissolution aided by small amount of CH2Cl2). This solution was washed with H2O (2 × 30 mL), dried (MgSO4), and concentrated in vacuo to give a crude mixture of lactols 15 and 16 as a white foam. This crude mixture was dissolved in MeCN-H2O (17 mL, 1:1 MeCN-H2O), and the temperature was lowered to 0 °C. 4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (14 mg, 0.066 mmol) was added, followed by aq KOH (7.5 M) until the pH was 11.5. A mixture of Br2 (0.21 mL, 4.10 mmol) and MeCN (6 mL) was added dropwise over 30 min, together with aq KOH (7.5 M) to maintain the pH at 11.5. Residual Br2 was washed into the reaction using MeCN-H2O (6 mL, 1:1 MeCN-H2O), and the reaction was further stirred at pH 11.5 and 0 °C for 2 h. Na2S2O5 (1.35 g, 7.10 mmol) was then added and the mixture stirred vigorously until it turned colorless; aq KOH (6 mL, 7.5 M, 45.0 mmol) was then added and the temperature was raised to 95 °C for 2 h. The mixture was cooled to 20 °C and acidified to pH 1 with aq HCl (2.0 M). The aqueous layer was extracted with EtOAc (4 × 20 mL), and the combined organic extracts were washed with brine (100 mL), dried (MgSO4), and concentrated in vacuo. The residue was dissolved in PhMe-MeOH (18 mL, 7:2 PhMe-MeOH), and(trimethylsilyl)diazomethane (5 mL, 2.0 M in hexane, 10.0 mmol) was added and the mixture stirred at 20 °C for 16 h. AcOH (0.6 mL) was then added and the mixture was concentrated in vacuo. Purification of the residue by column chromatography (25% Et2O-pentane) gave protected a-isokainic acid 17 (174 mg, 72% over 3 steps) as a colorless oil; R f = 0.3 (25% Et2O-pentane). IR: νmax = 2976, 1742, 1706, 1394, 1256, 1175, 1104, 1108, 897 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.33, 4.23 [1 H, s, C(2)H], 4.09-3.85 [2 H, m, C(5)H2], 3.67, 3.64 (3 H, s, OMe), 3.67, 3.64 (3 H, s, OMe′), 3.27 [1 H, dd, J = 9.4 Hz, J = 5.5 Hz, C(3)H], 2.45-2.32 (2 H, m, CH2CO2), 1.60 (3 H, s, Me), 1.56 (3 H, s, Me′), 1.43, 1.37 (9 H, s, CMe3). 13C NMR (100 MHz, CDCl3): δ = 172.5, 172.3 (CO2Me), 172.0, 171.8 (C′O2Me), 155.1, 154.6 (NCO2), 130.0, 129.1 (=C), 126.4, 126.3 (=C′), 80.2, 80.2 (CMe3), 64.4, 63.9 (C2), 52.4, 52.3 (OMe), 51.9, 51.9 (OMe′), 48.6 (C5), 42.7, 41.9 (C3), 38.5 (CH2CO2), 28.5, 28.3 (CMe 3), 21.1, 21.1 (Me), 20.5, 20.5 (Me′). MS (ES): m/z (%) = 705 (14) [2 M + Na+], 364 (100) [M + Na+], 308 (22), 242 (39) [M - Boc + H+]. Anal. Calcd for C17H28NO6 [M]: 342.1917; found [M + H+]: 342.1927.

15

a-Isokainic acid (3): mp 240-245 °C (dec.) [lit.5 237-240 °C (dec.)]. IR: νmax = 2927, 2361, 2342, 1564, 1557, 1373, 1297, 1043, 859 cm-1. 1H NMR (250 MHz, D2O): δ = 4.15 [1 H, d, J = 1.2 Hz, C(2)H], 4.06 [1 H, d, J = 14.9 Hz, C(5)H], 3.94 [1 H, d, J = 14.9, C(5)H′], 3.55 [1 H, td, J = 6.8 Hz, J = 1.2 Hz, C(3)H], 2.54 (1 H, dd, J = 14.8 Hz, J = 6.8 Hz, CHCO2), 2.46 (1 H, dd, J = 14.8 Hz, J = 6.8 Hz, CH′CO2), 1.71 (3 H, s, Me), 1.62 (3 H, s, Me′). 13C NMR (126 MHz, D2O): δ = 178.1 (CO2), 174.1 (CO2), 131.0 (=C), 126.0 (=C′), 66.7 (C2), 47.4 (C5), 42.2 (C3), 39.8 (C6), 21.2 (Me), 20.9 (Me′). MS (ES): m/z (%) = 212 (100) [M - H+], 168 (35). Anal. Calcd for C10H16NO4 [M]: 214.1079; found: [M + H+]: 214.1074.