Plant Biol (Stuttg) 2005; 7(5): 449-458
DOI: 10.1055/s-2005-865878
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Climate and Growth Form: The Consequences for Genome Size in Plants

D. Ohri1
  • 1Division of Genetics and Plant Breeding, National Botanical Research Institute, Lucknow-226001, U.P., India
Weitere Informationen


Received: February 14, 2005

Accepted: May 25, 2005

15. September 2005 (online)


The adaptive significance of nuclear DNA variation in angiosperms is still widely debated. The discussion mainly revolves round the causative factors influencing genome size and the adaptive consequences to an organism according to its growth form and environmental conditions. Nuclear DNA values are now known for 3874 angiosperm species (including 773 woody species) from over 219 families (out of a total of 500) and 181 species of woody gymnosperms, representing all the families. Therefore, comparisons have been made on not only angiosperms, taken as a whole, but also on the subsets of data based on taxonomic groups, growth forms, and environment. Nuclear DNA amounts in woody angiosperms are restricted to less than 23.54 % of the total range of herbaceous angiosperms; this range is further reduced to 6.8 % when woody and herbaceous species of temperate angiosperms are compared. Similarly, the tropical woody dicots are restricted to less than 50.5 % of the total range of tropical herbaceous dicots, while temperate woody dicots are restricted to less than 10.96 % of the total range of temperate herbaceous dicots. In the family Fabaceae woody species account for less than 14.1 % of herbaceous species. Therefore, in the total angiosperm sample and in subsets of data, woody growth form is characterized by a smaller genome size compared with the herbaceous growth form. Comparisons between angiosperm species growing in tropical and temperate regions show highly significant differences in DNA amount and genome size in the total angiosperm sample. However, when only herbaceous angiosperms were considered, significant differences were obtained in DNA amount, while genome size showed a non-significant difference. An atypical result was obtained in the case of woody angiosperms where mean DNA amount of tropical species was almost 25.04 % higher than that of temperate species, which is because of the inclusion of 85 species of woody monocots in the tropical sample. The difference becomes insignificant when genome size is compared. Comparison of tropical and temperate species among dicots and monocots and herbaceous monocots taken separately showed significant differences both in DNA amount and genome size. In herbaceous dicots, while DNA amount showed significant differences the genome size varies insignificantly. There was a non-significant difference among tropical and temperate woody dicots. In three families, i.e., Poaceae, Asteraceae, and Fabaceae the temperate species have significantly higher DNA amount and genome size than the tropical ones. Woody gymnosperms had significantly more DNA amount and genome size than woody angiosperms, woody eudicots, and woody monocots. Woody monocots also had significantly more DNA amount and genome size than woody eudicots. Lastly, there was no significant difference between deciduous and evergreen hardwoods. The significance of these results in relation to present knowledge on the evolution of genome size is discussed.


  • 1 Angiosperm Phylogeny Group. . An ordinal classification for the families of flowering plants.  Annals of the Missouri Botanical Garden. (1998);  85 531-553
  • 2 Avdulov N. P.. Karyo-systematische Untersuchungen der Familie Gramineen.  Bulletin Applied Botany Genetics and Plant Breeding. (1931);  44 1-428
  • 3 Baranyi M., Greilhuber J.. Genome size in Allium: in quest of reproducible data.  Annals of Botany. (1999);  83 687-695
  • 4 Belletti P., Marzachi C., Lanteri S.. Flow cytometric measurement of nuclear DNA content in Capsicum (Solanaceae).  Plant Systematics and Evolution. (1998);  209 85-91
  • 5 Bennett M. D.. DNA amount, latitude, and crop plant distribution.  Environmental and Experimental Botany. (1976);  16 93-108
  • 6 Bennett M. D., Cox A. V., Leitch I. J.. Angiosperm DNA C-values database (release 3.0). (2000)
  • 7 Bennett M. D., Leitch I. J., Hanson L.. DNA amounts in two samples of angiosperm weeds.  Annals of Botany. (1998);  82 (Suppl. A) 121-134
  • 8 Bennett M. D., Smith J. B., Lewis-Smith R. I.. DNA amounts of angiosperms from the Antarctic and South Georgia.  Environmental and Experimental Botany. (1982);  22 307-318
  • 9 Boscaiu M., Vicente O., Ehrendorfer F.. Chromosome numbers, karyotypes and nuclear DNA contents from perennial polyploid groups of Cerastium (Caryophyllaceae).  Plant Systematics and Evolution. (1999);  218 13-21
  • 10 Cerbah M., Coulaud J., Brown S. C., Siljak-Yakovlev S.. Evolutionary DNA variation in the genus Hypocheris. .  Heredity. (1999);  82 261-266
  • 11 Cros J., Combos M. C., Chabrillange N., Dupperray C., Desangles A. M., Hamon S.. Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species.  Canadian Journal of Botany. (1995);  73 14-20
  • 12 Dolezelova I., Lebeda A., Janecek J., Cihalikova J., Kristkova E., Vranova O.. Variation in chromosome number and nuclear DNA contents in genetic resources of Lactuca L. species (Asteraceae).  Genetic Resources and Crop Evolution. (2002);  49 383-395
  • 13 Ehrendorfer F.. Evolutionary significance of chromosomal differentiation patterns in gymnosperms and primitive angiosperms. Beck, C. B., ed. Origin and Early Evolution of Angiosperms. New York; Columbia University Press (1976): 220-240
  • 14 Ehrendorfer F.. Speciation patterns in woody angiosperms of tropical origin. Barigozzi, C., ed. Mechanisms of Speciation. New York; Alan R. Liss (1982): 479-509
  • 15 Grime J. P.. Ecological effects of climate change on plant populations and vegetative composition with particular reference to the British flora. Jackson, M., Ford, B. V., and Parry, M., eds. Climate Change and Plant Genetic Resources. London; Bellhaven Press (1990): 40-60
  • 16 Grime J. P., Mowforth M. A.. Variation in genome size - an ecological interpretation.  Nature. (1982);  299 151-153
  • 17 Grime J. P., Shacklock J. M. L., Band S. R.. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community.  New Phytologist. (1985);  100 435-445
  • 18 Hall S. E., Dvorak W. S., Johonston J. S., Price H. J., Williams C. G.. Flow cytometric analysis of DNA content for tropical and temperate New World pines.  Annals of Botany. (2000);  86 1081-1086
  • 19 Joyner K. L., Wang X.-R., Johnston S., Price H. J., Williams C. G.. DNA content for Asian pines parallels New World relatives.  Canadian Journal of Botany. (2001);  79 192-196
  • 20 Khoshoo T. N.. Cytogenetical evolution in gymnosperms-karyotype: proceedings of Summer School Darjeeling. Government of India (1962): 119-135
  • 21 Knight C. A., Ackerly D. D.. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis.  Ecology Letters. (2002);  5 66-76
  • 22 Labani R. M., Elkington T. T.. Nuclear DNA variation in the genus Allium L. (Liliaceae).  Heredity. (1987);  59 119-128
  • 23 Leitch I., Chase M. W., Bennett M. D.. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants.  Annals of Botany. (1998);  82 (Suppl. A) 85-94
  • 24 Levin D. A., Funderburg S. W.. Genome size in angiosperms: temperate versus tropical species.  American Naturalist. (1979);  114 784-795
  • 25 MacGillivray C. W., Grime J. P.. Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetative response to global warming.  Functional Ecology. (1995);  9 320-325
  • 26 Mehetre S. S., Narayan R. K. J.. Evolutionary DNA variation and genome differentiation in Gossypium L.  Proceedings of Indian National Science Academy. (1997);  B63 63-72
  • 27 Mehra P. N.. Cytology of Indian Hardwoods. Calcutta; Sree Saraswaty Press Ltd (1976)
  • 28 Mehra P. N., Bawa K. S.. Chromosomal evolution in tropical hardwoods.  Evolution. (1969);  23 466-481
  • 29 Mishiba K., Ando T., Mii M., Watanabe H., Kokubun H., Hashimoto G., Marchesi E.. Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae).  Annals of Botany. (2000);  85 665-673
  • 30 Morawetz W.. Remarks on karyological differentiation patterns in tropical woody plants.  Plant Systematics and Evolution. (1986);  152 49-100
  • 31 Murray B. G.. Nuclear DNA amounts in gymnosperms.  Annals of Botany. (1998);  82 (Suppl. A) 3-15
  • 32 Murray B. G., Leitch I. J., Bennett M. D.. Gymnosperm DNA C-value database. (2001)
  • 33 Ohri D.. Genome size and polyploidy variation in tropical hardwood genus Terminalia (Combretaceae).  Plant Systematics and Evolution. (1996);  200 225-232
  • 34 Ohri D.. Genome size variation in some tropical hardwoods.  Biologia Plantarum. (2002);  45 455-457
  • 35 Ohri D., Khoshoo T. N.. Genome size in gymnosperms.  Plant Systematics and Evolution. (1986 a);  153 119-132
  • 36 Ohri D., Khoshoo T. N.. Plant DNA contents and systematics. Dutta, S. K., ed. DNA Systematics, Vol. II, Plants. Florida; CRC Press (1986 b): 2-19
  • 37 Ohri D., Kumar A.. Nuclear DNA amounts in some tropical hardwoods.  Caryologia. (1986);  39 303-307
  • 38 Ohri D., Pistrick K.. Phenology and genome size variation in Allium L. - a tight correlation?.  Plant Biology. (2001);  3 654-660
  • 39 Ohri D., Singh S. P.. Karyotype and genome size variation in Cajanus cajan (L.) Millsp. (pigeonpea) and some wild relatives.  Genetic Resources and Crop Evolution. (2002);  49 1-10
  • 40 Ohri D., Bhargava A., Chatterjee A.. Nuclear DNA amounts in 112 species of tropical hardwoods - new estimates.  Plant Biology. (2004);  6 555-561
  • 41 Ohri D., Kumar A., Pal M.. Correlations between 2C DNA values and habit in Cassia (Leguminosae - Caesalpinioideae).  Plant Systematics and Evolution. (1986);  153 223-227
  • 42 Patel R. N.. Wood anatomy of Podocarpaceae indigenous to New Zealand I. Dacrydium. .  New Zealand Journal of Botany. (1967 a);  5 171-184
  • 43 Patel R. N.. Wood anatomy of Podocarpaceae indigenous to New Zealand II. Podocarpus. .  New Zealand Journal of Botany. (1967 b);  5 307-321
  • 44 Stebbins G. L.. Variation and Evolution in Plants. New York; Columbia University Press (1950)
  • 45 Stebbins G. L.. Chromosome variation and evolution.  Science. (1966);  152 1463-1469
  • 46 Stebbins G. L.. Chromosome Evolution in Higher Plants. London; Edward Arnold (1971)
  • 47 Torell M., Valles J.. Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): systematic, evolutionary, and ecological implications.  Genome. (2001);  44 231-238
  • 48 Wakamiya I., Price H. J., Messina M. G., Newton R. J.. Pine genome diversity and water relations.  Physiologia Plantarum. (1996);  96 13-20
  • 49 Wilson B. F.. A model for cell production by the cambium of conifers. Zimmermann, M. H., ed. The Formation of Wood in Forest Trees. London; Academic Press (1964): 19
  • 50 Wilson B. F.. Mitotic activity in the cambial zone of Pinus strobes. .  American Journal of Botany. (1966);  53 364
  • 51 Zonneveld B. J. M.. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions.  Plant Systematics and Evolution. (2001);  229 125-130
  • 52 Zonneveld B. J. M., Van Iran F.. Genome size and pollen viability as taxonomic criteria: application to the genus Hosta. .  Plant Biology. (2001);  3 176-185

D. Ohri

Division of Genetics and Plant Breeding
National Botanical Research Institute

Lucknow-226001, U.P.



Editor: F. Salamini