Synthesis 2005(9): 1425-1430  
DOI: 10.1055/s-2005-865317
PAPER
© Georg Thieme Verlag Stuttgart · New York

The Stability of Acylpyridinium Cations and Their Relation to the Catalytic Activity of Pyridine Bases

I. Held, A. Villinger, H. Zipse*
Department Chemie und Biochemie, LMU München, Butenandtstrasse 13, 81377 München, Germany
Fax: +49(89)218077738; e-Mail: zipse@cup.uni-muenchen.de;
Further Information

Publication History

Received 28 February 2005
Publication Date:
13 April 2005 (eFirst)

Abstract

The stability of acylpyridinium cations can be used as a predictive tool for the development of catalysts for acyl transfer reactions based on the 4-aminopyridine motive. Substituents in 2-position of the pyridine ring are detrimental to both, the catalytic activity of pyridine catalysts as well as the stability of the respective acetylpyridinium cations. Alkyl substituents located in 3-position of the pyridine ring and at the nitrogen substituent in 4-position lead to higher catalytic activity as well as more stable acetylpyridinium cations. This is, of course, only true as long as steric effects do not hinder the proper alignment of the 4-amino substituent and the pyridine ring.

    References

  • 1a Litvinenko LM. Kirichenko AI. Dokl. Akad. Nauk SSSR  1967,  176:  97 
  • 1b Steglich W. Höfle G. Angew. Chem., Int. Ed. Engl.  1969,  8:  981 
  • 1c Höfle G. Steglich W. Synthesis  1972,  619 
  • For reviews see:
  • 2a Höfle G. Steglich W. Vorbrüggen H. Angew. Chem., Int. Ed. Engl.  1978,  17:  569 ; Angew. Chem. 1978, 90, 602
  • 2b Scriven EFV. Chem. Soc. Rev.  1983,  12:  129 
  • 2c Hassner A. In Encyclopedia of Reagents for Organic Synthesis   Vol. 3:  Paquette LA. Wiley; Chichester: 1995.  p.2022-2024  
  • 2d Rannarson U. Grehn L. Acc. Chem. Res.  1998,  31:  494 
  • 2e Berry DJ. Digiovanna CV. Metrick SS. Murugan R. Arkivoc  2001,  i:  201 
  • 2f Spivey AC. Arseniyadis S. Angew. Chem. Int. Ed.  2004,  43:  5436 ; Angew. Chem. 2004, 116, 5552
  • For reviews see:
  • 3a Fu G. Acc. Chem. Res.  2000,  33:  412 
  • 3b Spivey AC. Maddaford A. Redgrave A. Org. Prep. Proced. Int.  2000,  32:  331 
  • 3c France S. Guerin DJ. Miller SJ. Lectka T. Chem. Rev.  2003,  103:  2985 
  • 3d Fu G. Acc. Chem. Res.  2004,  37:  542 
  • 3e Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 4a Vedejs E. Chen X. J. Am. Chem. Soc.  1996,  118:  1809 
  • 4b Shaw SA. Aleman P. Vedejs E. J. Am. Chem. Soc.  2003,  125:  13368 
  • 5a Mermerian AH. Fu GC. Angew. Chem. Int. Ed.  2005,  44:  949 
  • 5b Wilson JE. Fu GC. Angew. Chem. Int. Ed.  2004,  43:  6358 
  • 5c Hills ID. Fu GC. Angew. Chem. Int. Ed.  2003,  42:  3921 
  • 5d Mermerian AH. Fu GC. J. Am. Chem. Soc.  2003,  125:  4050 
  • 5e Hodous BL. Fu GC. J. Am. Chem. Soc.  2002,  124:  10006 
  • 5f Hodous BL. Fu GC. J. Am. Chem. Soc.  2002,  124:  1578 
  • 5g Bellemin-Laponnaz S. Tweddell J. Ruble JC. Breitling FM. Fu GC. Chem. Commun.  2000,  1009 
  • 5h Ruble JC. Tweddell J. Fu GC. J. Org. Chem.  1998,  63:  2794 
  • 5i Ruble JC. Latham HA. Fu GC. J. Am. Chem. Soc.  1997,  119:  1492 
  • 5j Ruble JC. Fu GC. J. Org. Chem.  1996,  61:  7230 
  • 6 Tabanella S. Valancogne I. Jackson RFW. Org. Biomol. Chem.  2003,  1:  4254 
  • 7 Jeong K.-S. Kim S.-H. Park H.-J. Chang K.-J. Kim KS. Chem. Lett.  2002,  1114 
  • 8a Kawabata T. Nagato M. Takasu K. Fuji K. J. Am. Chem. Soc.  1997,  119:  3169 
  • 8b Kawabata T. Yamamoto K. Momose Y. Yoshida H. Nagaoka Y. Fuji K. Chem. Commun.  2001,  2700 
  • 8c Kawabata T. Stragies R. Fukaya T. Fuji K. Chirality  2003,  15:  71 
  • 8d Kawabata T. Stragies R. Fukaya T. Nagaoka Y. Schedel H. Fuji K. Tetrahedron Lett.  2003,  44:  1545 
  • 9a Spivey AC. Fekner T. Spey SE. Adams H. J. Org. Chem.  1999,  64:  9430 ; and literature cited therein
  • 9b Spivey AC. Fekner T. Spey SE. J. Org. Chem.  2000,  65:  3154 
  • 9c Spivey AC. Maddafort A. Fekner T. Redgrave AJ. Frampton CS. J. Chem. Soc., Perkin Trans. 1  2000,  3460 
  • 9d Spivey AC. Maddafort A. Fekner T. Leese DP. Redgrave AJ. Frampton CS. J. Chem. Soc., Perkin Trans. 1  2001,  1785 
  • 9e Spivey AC. Leese DP. Zhu F. Davey SG. Jarvest RL. Tetrahedron  2004,  60:  4513 
  • 10 Priem G. Pelotier B. Macdonald SJF. Anson MS. Campbell IB. J. Org. Chem.  2003,  68:  3844 
  • 11 Heinrich MR. Klisa HS. Mayr H. Steglich W. Zipse H. Angew. Chem. Int. Ed.  2003,  42:  4826 
  • 12 Essery J. Schofield K. J. Chem. Soc.  1961,  3939 
  • 13 Hall HK. J. Phys. Chem.  1956,  60:  63 
  • 14 Reed AE. Curtiss LA. Weinhold F. Chem. Rev.  1988,  88:  899 
  • 15 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Zakrzewski VG. Montgomery JA. Stratmann RE. Burant JC. Dapprich S. Millam JM. Daniels AD. Kudin KN. Strain MC. Farkas O. Tomasi J. Barone V. Cossi M. Cammi R. Mennucci B. Pomelli C. Adamo C. Clifford S. Ochterski J. Petersson GA. Ayala PY. Cui Q. Morokuma K. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Cioslowski J. Ortiz JV. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Gomperts R. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Gonzalez C. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Andres JL. Gonzalez C. Head-Gordon M. Replogle ES. Pople JA. Gaussian 98, Revision A.7   Gaussian, Inc.; Pittsburgh PA: 1998. 
  • 16 Hassner A. Krepski LR. Alexanian V. Tetrahedron  1978,  34:  2069 
  • 17a Dahmen S. Bräse S. J. Am. Chem. Soc.  2002,  124:  5940 
  • 17b Danilova TI. Rozenberg KI. Starikova ZA. Bräse S. Tetrahedron: Asymmetry  2004,  15:  223 
18

Bräse, S. private communication.