Abstract
The photo-dehydro-Diels-Alder reaction (PDDA), a new photochemical route to naphthalenes
is presented. The [4+2] cycloaddition takes place between 3-arylynones and arylacetylenes,
in which these moieties may be located in two molecules (intermolecular PDDA, 1 ) or in the same molecule (intramolecular PDDA, 5 and 9 ). Especially the latter approach is attractive from a preparative point of view and
permits a straightforward access to highly functionalized naphthalenes. The irradiation
of unsymmetrical reactants 9 provides, in contrast to symmetrical reactants 5 , two isomeric naphthalenes. We found that the regioselectivity can be easily influenced
by suitably located substituents in the aromatic rings and by blocking undesired positions.
Notably, the PDDA may be used for the preparation of binaphthyls, as shown by the
formation of 14 and 16 . The mechanism of the PDDA was elucidated by spectroscopic analyses and theoretical
(DFT) calculations.
Key words
dehydro Diels-Alder reaction - naphthalenes - binaphthyls - photocyclization
References
<A NAME="RC01705SS-1A">1a </A>
Norrish RGW.
Appleyard MES.
J. Chem. Soc.
1934,
874
<A NAME="RC01705SS-1B">1b </A>
Yang NC.
Yang D.-DH.
J. Am. Chem. Soc.
1958,
80:
2913
<A NAME="RC01705SS-1C">1c </A>
Wagner PJ. In CRC Handbook of Organic Photochemistry and Photobiology
2nd ed.:
Horspool WM.
Lenci F.
CRC Press;
Boca Raton:
2003.
p.52
<A NAME="RC01705SS-1D">1d </A>
Wagner PJ. In CRC Handbook of Organic Photochemistry and Photobiology
2nd ed.:
Horspool WM.
Lenci F.
CRC Press;
Boca Raton:
2003.
p.58
<A NAME="RC01705SS-1E">1e </A>
Wessig P. In Radicals in Organic Synthesis
Renaud P.
Sibi MP.
VCH-Wiley;
Weinheim:
2001.
<A NAME="RC01705SS-1F">1f </A>
Wessig P. In CRC Handbook of Organic Photochemistry and Photobiology
2nd ed.:
Horspool WM.
Lenci F.
CRC Press;
Boca Raton:
2003.
p.57
<A NAME="RC01705SS-2A">2a </A>
Jones G.
Org. Photochem.
1981,
5:
1
<A NAME="RC01705SS-2B">2b </A>
Griesbeck AG. In CRC Handbook of Organic Photochemistry and Photobiology
2nd ed.:
Horspool WM.
Lenci F.
CRC Press;
Boca Raton:
2003.
p.59
<A NAME="RC01705SS-2C">2c </A>
Griesbeck AG. In CRC Handbook of Organic Photochemistry and Photobiology
2nd ed.:
Horspool WM.
Lenci F.
CRC Press;
Boca Raton:
2003.
p.60
<A NAME="RC01705SS-3">3 </A>
Wessig P.
Mühling O. In Synthetic Organic Photochemistry
Griesbeck AG.
Mattay J.
Marcel Decker;
New York:
2005.
p.41-88
<A NAME="RC01705SS-4">4 </A>
The introduction of electron-donating groups, which facilitate oxidative degradation
of aromatic rings, reduce the Norrish-Yang reactivity of corresponding ketones dramatically.1c,d
<A NAME="RC01705SS-5">5 </A>
Michael A.
Bucher JE.
Ber. Dtsch. Chem. Ges.
1895,
28:
2511
<A NAME="RC01705SS-6">6 </A>
Pfeiffer P.
Möller W.
Ber. Dtsch. Chem. Ges.
1907,
40:
3841
<A NAME="RC01705SS-7A">7a </A>
Bucher JE.
J. Am. Chem. Soc.
1910,
32:
212
<A NAME="RC01705SS-7B">7b </A>
Haworth RD.
Sheldrick G.
J. Chem. Soc.
1935,
636
<A NAME="RC01705SS-7C">7c </A>
Haworth RD.
Kelly W.
J. Chem. Soc.
1936,
745
<A NAME="RC01705SS-7D">7d </A>
Baddar FG.
El-Assal LS.
Doss NA.
J. Chem. Soc.
1959,
1027
<A NAME="RC01705SS-7E">7e </A>
Brown D.
Stevenson R.
J. Org. Chem.
1965,
30:
1759
<A NAME="RC01705SS-7F">7f </A>
Klemm LH.
Gopinath KW.
Lee DH.
Kelley FW.
Trod E.
McGuire TM.
Tetrahedron
1966,
22:
1797
<A NAME="RC01705SS-8">8 </A>
Whitlock HW.
Wu E.-M.
Whitlock BJ.
J. Org. Chem.
1969,
34:
1857
<A NAME="RC01705SS-9">9 </A>
Müller E.
Sauerbier M.
Streichfuß D.
Thomas R.
Winter W.
Zountsas G.
Liebigs Ann. Chem.
1971,
750:
63
<A NAME="RC01705SS-10">10 </A>
Müller E.
Odenigbo G.
Liebigs Ann. Chem.
1975,
1435
<A NAME="RC01705SS-11">11 </A>
Wagner F.
Meier H.
Tetrahedron
1974,
30:
773
<A NAME="RC01705SS-12A">12a </A>
Chabala JC.
Vincent JE.
Tetrahedron Lett.
1978,
19:
937
<A NAME="RC01705SS-12B">12b </A>
Yamaguchi M.
Shibato K.
Fujiwara S.
Hirao I.
Synthesis
1986,
421
<A NAME="RC01705SS-12C">12c </A>
Doubsky J.
Streinz L.
Leseticky L.
Koutek B.
Synlett
2003,
937
<A NAME="RC01705SS-13">13 </A>
Yashina OG.
Sarwaa TW.
Kaigorodowa TD.
Wereschtschagin LI.
J. Org. Chem. USSR (Engl. Transl.)
1968,
4:
2032 ; Zh. Org. Khim. ; 1968 , 4 : 2104
<A NAME="RC01705SS-14A">14a </A>
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4156
<A NAME="RC01705SS-14B">14b </A>
Dess DB.
Martin JC.
J. Am. Chem. Soc.
1991,
113:
7277
<A NAME="RC01705SS-15A">15a </A>
Miyashita A.
Yasuda A.
Takaya H.
Toriumi K.
Ito T.
Souchi T.
Notori R.
J. Am. Chem. Soc.
1980,
102:
7932
<A NAME="RC01705SS-15B">15b </A>
Takaya H.
Mashima K.
Koyano K.
Yagi M.
Kumobayashi H.
Taketomi T.
Akutagawa S.
Notori R.
J. Org. Chem.
1986,
51:
629
<A NAME="RC01705SS-16">16 </A>
We thank Dr. B. Ziemer for performing the X-ray structure analysis of 16 . Details of the structure investigation are available on request from the Cambridge
Crystallographic Data Centre, on quoting the depository number CCDC 266349.
<A NAME="RC01705SS-17">17 </A>
El-Sayed MA.
J. Chem. Phys.
1963,
38:
2834
<A NAME="RC01705SS-18">18 </A>
Woodward RB.
Hoffmann R.
J. Am. Chem. Soc.
1965,
87:
395
<A NAME="RC01705SS-19A">19a </A>
Becke AD.
J. Chem. Phys.
1993,
98:
5648
<A NAME="RC01705SS-19B">19b </A>
Lee C.
Yang W.
Parr RG.
Phys. Rev. B
1988,
37:
785
<A NAME="RC01705SS-19C">19c </A>
Miehlich B.
Savin A.
Stoll H.
Preuss H.
Chem. Phys. Lett.
1989,
157:
200
<A NAME="RC01705SS-19D">19d </A>
Parr RG.
Yang W.
Density-Functional Theory of Atom and Molecules
Oxford University Press;
New York:
1989.
<A NAME="RC01705SS-20A">20a </A>
Ditchfield R.
Hehre WJ.
Pople JA.
J. Chem. Phys.
1971,
54:
724
<A NAME="RC01705SS-20B">20b </A>
Hariharan PC.
Pople JA.
Chem. Phys. Lett.
1972,
66:
217
<A NAME="RC01705SS-20C">20c </A>
Rassolov VA.
Ratner MA.
Pople JA.
Redfern PC.
Curtiss LA.
J. Comp. Chem.
2001,
22:
976
<A NAME="RC01705SS-20D">20d </A>
McLean AD.
Chandler GS.
J. Chem. Phys.
1980,
72:
5639
<A NAME="RC01705SS-20E">20e </A>
Krishnan R.
Binkley JS.
Seeger R.
Pople JA.
J. Chem. Phys.
1980,
72:
650
<A NAME="RC01705SS-21">21 </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick KD.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision B.04
Gaussian, Inc.;
Pittsburgh PA:
2003.
<A NAME="RC01705SS-22A">22a </A>
Scaiano JC.
Tetrahedron
1982,
38:
819
<A NAME="RC01705SS-22B">22b </A>
Salem L.
Rowland C.
Angew. Chem., Int. Ed. Engl.
1972,
11:
92
<A NAME="RC01705SS-22C">22c </A>
Griesbeck AG.
Mauder H.
Stadtmüller S.
Acc. Chem. Res.
1994,
27:
70
<A NAME="RC01705SS-23">23 </A> The energies of all singlet species were spin corrected using the method of Yamaguchi:
Yamaguchi K.
Jensen F.
Dorigo A.
Houk KN.
Chem. Phys. Lett.
1988,
149:
537
<A NAME="RC01705SS-24">24 </A> The charge distribution was evaluated by the Atomic Polar Tensors (APT) method:
Cioslowski J.
J. Am. Chem. Soc.
1989,
111:
8333