Abstract
(E )-β-Arylvinyl bromides were readily prepared in a short reaction time (1-2 min) by
microwave irradiation of the corresponding 3-arylpropenoic acids in the presence of
N -bromosuccinimide and a catalytic amount of lithium acetate. Furthermore, two facile
strategies for the efficient synthesis of (E )-β-bromo-4-arylethynylstyrene and (E )-β-bromo-4-arylstyrene have been developed by respectively combining Sonogashira
and Suzuki coupling reaction with Hunsdiecker-type reaction. Formation of cis -α-bromo-β-lactone by microwave irradiation of cis -cinnamic acid with NBS provides a useful support for the mechanistic study of the
present halodecarboxylation reaction.
Key words
(E )-β-arylvinyl bromides - α,β-unsaturated carboxylic acids - stereoselective synthesis
- microwave irradiation - Hunsdiecker-type reaction
References
<A NAME="RF17704SS-1">1 </A>
Davis FA.
Lal GS.
Wei J.
Tetrahedron Lett.
1988,
29:
4269
<A NAME="RF17704SS-2A">2a </A>
Tsuji J.
Palladium Reagent and Catalysts, Innovations in Organic Synthesis
Wiley;
Chichester:
1995.
<A NAME="RF17704SS-2B">2b </A>
Diederich F.
Stang PJ.
Metal-Catalyzed Cross-Coupling Reactions
Wiley-VCH;
Weinheim:
1998.
<A NAME="RF17704SS-3A">3a </A>
Zweifel G.
Whitney CC.
J. Am. Chem. Soc.
1967,
89:
2753
<A NAME="RF17704SS-3B">3b </A>
Alexakis A.
Duffault JM.
Tetrahedron Lett.
1988,
29:
6243
<A NAME="RF17704SS-4A">4a </A>
Brown HC.
Hamaoka T.
Ravindran N.
J. Am. Chem. Soc.
1973,
95:
6456
<A NAME="RF17704SS-4B">4b </A>
Brown HC.
Bhat NG.
Rajagopalan S.
Synthesis
1986,
480
<A NAME="RF17704SS-4C">4c </A>
Brown HC.
Hamaoka T.
Ravindran N.
Subrahmanyam C.
Somayaji V.
Bhat NG.
J. Org. Chem.
1989,
54:
6075
<A NAME="RF17704SS-4D">4d </A>
Brown HC.
Larock RC.
Gupta SK.
Rajagopalan S.
Bhat NG.
J. Org. Chem.
1989,
54:
6079
<A NAME="RF17704SS-4E">4e </A>
Masuda Y.
Hoshi M.
Arase A.
J. Chem. Soc., Perkin Trans. 1
1992,
2725
<A NAME="RF17704SS-4F">4f </A>
Stewart SK.
Whiting A.
Tetrahedron Lett.
1995,
36:
3929
<A NAME="RF17704SS-4G">4g </A>
Petasis NA.
Zavialov IA.
Tetrahedron Lett.
1996,
37:
567
<A NAME="RF17704SS-4H">4h </A>
Hoshi M.
Tanaka H.
Shirakawa K.
Arase A.
Chem. Commun.
1999,
627
<A NAME="RF17704SS-4I">4i </A>
Hoshi M.
Shirakawa K.
Chem. Commun.
2002,
2146
<A NAME="RF17704SS-5">5 </A>
Miller RB.
McGarvey G.
J. Org. Chem.
1978,
43:
4424
<A NAME="RF17704SS-6A">6a </A>
Takai K.
Nitta K.
Utimoto K.
J. Am. Chem. Soc.
1986,
108:
7408
<A NAME="RF17704SS-6B">6b </A>
Takai K.
Ichiguchi T.
Hikasa S.
Synlett
1999,
1268
<A NAME="RF17704SS-7A">7a </A>
Harada T.
Katsuhira T.
Oku A.
J. Org. Chem.
1992,
57:
5805
<A NAME="RF17704SS-7B">7b </A>
Harada T.
Katsuhira T.
Hara D.
Kotani Y.
Maejima K.
Kaji R.
Oku A.
J. Org. Chem.
1993,
58:
4897
<A NAME="RF17704SS-8">8 </A>
Charreau P.
Julia M.
Verpeaux J.-N.
J. Organomet. Chem.
1989,
379:
201
<A NAME="RF17704SS-9A">9a </A>
Lipshutz BH.
Keil R.
Ellsworth EL.
Tetrahedron Lett.
1990,
31:
7257
<A NAME="RF17704SS-9B">9b </A>
Treilhou M.
Fauve A.
Pougny J.-R.
Promé J.-C.
Veschambre H.
J. Org. Chem.
1992,
57:
3203
<A NAME="RF17704SS-9C">9c </A>
Lipshutz BH.
Lindsley C.
Bhandari A.
Tetrahedron Lett.
1994,
35:
4669
<A NAME="RF17704SS-9D">9d </A>
Jyojima T.
Katohno M.
Miyamoto N.
Nakata M.
Matsumura S.
Toshima K.
Tetrahedron Lett.
1998,
39:
6003
<A NAME="RF17704SS-9E">9e </A>
Huang X.
Wang J.-H.
Yang D.-Y.
J. Chem. Soc., Perkin Trans. 1
1999,
673
<A NAME="RF17704SS-10A">10a </A>
Haack RA.
Penning TD.
Djuric SW.
Dziuba JA.
Tetrahedron Lett.
1988,
29:
2783
<A NAME="RF17704SS-10B">10b </A>
Farina V.
Baker SR.
Benigni DA.
Hauck SI.
Sapino C.
J. Org. Chem.
1990,
55:
5833
<A NAME="RF17704SS-10C">10c </A>
Boden CDJ.
Pattenden G.
Ye T.
J. Chem. Soc., Perkin Trans. 1
1996,
2417
<A NAME="RF17704SS-10D">10d </A>
Cid MB.
Pattenden G.
Synlett
1998,
540
<A NAME="RF17704SS-11">11 </A>
Ranu BC.
Samanta S.
Guchhait SK.
J. Org. Chem.
2001,
66:
4102
<A NAME="RF17704SS-12">12 </A>
Fakhfakh MA.
Franck X.
Hocquemiller R.
Figadére B.
J. Organomet. Chem.
2001,
66:
4102
<A NAME="RF17704SS-13">13 </A>
Wang L.
Li P.
Xie Y.
Ding Y.
Synlett
2003,
1137
<A NAME="RF17704SS-14A">14a </A>
Hirao T.
Masunaga T.
Ohshiro Y.
Agawa T.
J. Org. Chem.
1981,
46:
3745
<A NAME="RF17704SS-14B">14b </A>
Rossi R.
Carpita A.
Lippolis V.
Synth. Commun.
1991,
21:
333
<A NAME="RF17704SS-14C">14c </A>
Alzeer J.
Chollet J.
Heinze-Krauss I.
Hubschwerlen C.
Matile H.
Ridley RG.
J. Med. Chem.
2000,
43:
560
<A NAME="RF17704SS-14D">14d </A>
Abbas S.
Hayes CJ.
Synlett
1999,
1124
<A NAME="RF17704SS-14E">14e </A>
Abbas S.
Hayes CJ.
Worden S.
Tetrahedron Lett.
2000,
41:
3215
<A NAME="RF17704SS-14F">14f </A>
Kuang C.
Senboku H.
Tokuda M.
Tetrahedron
2002,
58:
1491
<A NAME="RF17704SS-15">15 </A>
Horibe H.
Kondo K.
Okuno H.
Aoyama T.
Synthesis
2004,
986
<A NAME="RF17704SS-16">16 </A>
Feroci M.
Orsini M.
Palombi L.
Sotgiu G.
Inesi A.
Electrochim. Acta
2004,
49:
635
<A NAME="RF17704SS-17A">17a </A>
Johnson RG.
Ingham RK.
Chem. Rev.
1956,
56:
219
<A NAME="RF17704SS-17B">17b </A>
Wilson CV.
Org. React.
1957,
9:
332
<A NAME="RF17704SS-17C">17c </A>
Berman JD.
Price CC.
J. Org. Chem.
1958,
23:
102
<A NAME="RF17704SS-17D">17d </A>
Jones AS.
Verhelst G.
Walker RT.
Tetrahedron Lett.
1979,
20:
4415
<A NAME="RF17704SS-17E">17e </A>
Barton DHR.
Lacher B.
Zard SZ.
Tetrahedron Lett.
1985,
26:
5939
<A NAME="RF17704SS-17F">17f </A>
Izawa T.
Nishiyama S.
Yamamura S.
Kato K.
Takita T.
J. Chem. Soc., Perkin Trans. 1
1992,
2519
<A NAME="RF17704SS-17G">17g </A>
Graven A.
Jøgensen KA.
Dahl S.
Stanczak A.
J. Org. Chem.
1994,
59:
3543
<A NAME="RF17704SS-17H">17h </A>
Chowdhury S.
Roy S.
Tetrahedron Lett.
1996,
37:
2623
<A NAME="RF17704SS-17I">17i </A>
Chowdhury S.
Roy S.
J. Org. Chem.
1997,
62:
199
<A NAME="RF17704SS-17J">17j </A>
Homsi F.
Rousseau G.
Tetrahedron Lett.
1999,
40:
1495
<A NAME="RF17704SS-17K">17k </A>
Naskar D.
Roy S.
Tetrahedron
2000,
56:
1369
<A NAME="RF17704SS-17L">17l </A>
You H.-W.
Lee K.-J.
Synlett
2001,
105
<A NAME="RF17704SS-17M">17m </A>
Sinha J.
Layek S.
Mandal GC.
Bhattacharjee M.
Chem. Commun.
2001,
1916
<A NAME="RF17704SS-17N">17n </A>
Roy SC.
Guin C.
Maiti G.
Tetrahedron Lett.
2001,
42:
9253
<A NAME="RF17704SS-17O">17o </A>
Das JP.
Roy S.
J. Org. Chem.
2002,
67:
7861
<A NAME="RF17704SS-17P">17p </A>
Ye C.
Shreeve JM.
J. Org. Chem.
2004,
69:
8561
<A NAME="RF17704SS-18A">18a </A>
Trumbull ER.
Finn RT.
Ibne-Rase KM.
Sallers CK.
J. Org. Chem.
1962,
27:
2339
<A NAME="RF17704SS-18B">18b </A>
Wang C.-LJ.
Calabrese JC.
J. Org. Chem.
1991,
56:
4341
<A NAME="RF17704SS-18C">18c </A>
Kitamura T.
Aoyagi Y.
Fujiwara Y.
Chem. Lett.
1998,
1271
<A NAME="RF17704SS-19A">19a </A>
Abramovitch RA.
Org. Prep. Proced. Int.
1991,
23:
683
<A NAME="RF17704SS-19B">19b </A>
Caddick S.
Tetrahedron
1995,
51:
10403
<A NAME="RF17704SS-19C">19c </A>
Loupy A.
Petit A.
Hamelin J.
Texier-Boullet F.
Jacquault P.
Mathé D.
Synthesis
1998,
1213
<A NAME="RF17704SS-19D">19d </A>
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RF17704SS-19E">19e </A>
Kidwai M.
Pure Appl. Chem.
2001,
73:
147
<A NAME="RF17704SS-19F">19f </A>
Larhed M.
Moberg C.
Hallberg A.
Acc. Chem. Res.
2002,
35:
717
<A NAME="RF17704SS-19G">19g </A>
Nüchter M.
Ondruschka B.
Bonrath W.
Gum A.
Green Chem.
2004,
6:
128
<A NAME="RF17704SS-20">20 </A>
Kuang C.
Senboku H.
Tokuda M.
Synlett
2000,
1439
<A NAME="RF17704SS-21">21 </A>
Lopez LC.
Strohriegl P.
Stübinger T.
Macromol. Chem. Phys.
2002,
203:
1926
<A NAME="RF17704SS-22A">22a </A>
Moyano A.
Pericà MA.
Valentí E.
J. Org. Chem.
1989,
54:
573
<A NAME="RF17704SS-22B">22b </A>
Danheiser RL.
Nowick JS.
J. Org. Chem.
1991,
56:
1176
<A NAME="RF17704SS-22C">22c </A>
Pommier A.
Pons J.-M.
Synthesis
1993,
441
<A NAME="RF17704SS-22D">22d </A>
Morao I.
Lecea B.
Arrieta A.
Cossío FP.
J. Am. Chem. Soc.
1997,
119:
816
<A NAME="RF17704SS-23A">23a </A>
Microwave irradiation of 4-phenylbut-3-enoic acid (162 mg, 1 mmol) in MeCN-H2 O (4.6 mL:0.4 mL) solvent containing NBS (187 mg, 1.05 mmol) and catalytic amount
of LiOAc (13 mg, 0.2 mmol) for 1 min gave the corresponding trans -3-bromo-4-phenylbutenolide in 85% yield. The physical data of trans -3-bromo-4-phenylbutenolide are as follows: colorless oil; IR (Nujol): 1810 cm-1 (γ-lactone C=O); 1 H NMR (270 MHz, CDCl3 ): δ = 2.96 (1 H, dd, J = 18.1, 6.6 Hz), 3.23 (1 H, dd, J = 18.1, 7.6 Hz), 4.24 (1 H, m, J = 6.6, 7.6 Hz), 5.64 (1 H, d, J = 5.3 Hz), 7.35-7.44 (5 H, m); 13 C NMR (67.5 MHz, CDCl3 ): δ = 38.73, 45.63, 87.75, 125.46, 128.97, 129.29, 135.74, 172.99; EIMS: m /z (%) = 242 [(M + 2)+ , 24], 240 (M+ , 25), 161 (45), 107 (100); HRMS: m /z calcd for C10 H9
79 BrO2 [M+ ]: 239.9785; found: 239.9762.
<A NAME="RF17704SS-23B">23b </A> For early studies by other reaction, see:
Crich D.
Beckwith ALJ.
Filzene GF.
Longmore RW.
J. Am Chem. Soc.
1996,
118:
7422
<A NAME="RF17704SS-24">24 </A>
cis -3-Bromo-4-phenyloxetan-2-one (4 ) was prepared from cis -cinnamic acid in 85% yield according to the general procedure. The physical data
of 4 are as follows: colorless oil; IR (neat): 1844 cm-1 (β-lactone C=O); 1 H NMR (270 MHz, CDCl3 ): δ = 5.58 (1 H, d, J = 5.94 Hz), 5.74 (1 H, d, J = 5.94 Hz), 7.36-7.45 (5 H, m); EIMS: m /z (%) = 228 [(M + 2)+ , 24], 226 (M+ , 25), 182 (M+ - CO2 , 100); HRMS: m /z calcd for C9 H7
79 BrO2 [M+ ]: 225.9629; found: 225.9627.
<A NAME="RF17704SS-25">25 </A>
Imai T.
Nishida S.
J. Org. Chem.
1980,
45:
2354
<A NAME="RF17704SS-26">26 </A>
Hocking MB.
Can. J. Chem.
1969,
47:
4567
<A NAME="RF17704SS-27">27 </A>
Lee DG.
Brown KC.
Karaman H.
Can. J. Chem.
1986,
64:
1054
<A NAME="RF17704SS-28">28 </A>
Happer DAR.
Steenson BE.
J. Chem. Soc., Perkin Trans 2
1988,
19
<A NAME="RF17704SS-29">29 </A>
Loar MK.
Stille JK.
J. Am. Chem. Soc.
1981,
103:
4174
<A NAME="RF17704SS-30">30 </A>
Konz WE.
Hechtl W.
Huisgen R.
J. Am. Chem. Soc.
1970,
92:
4104
<A NAME="RF17704SS-31">31 </A>
Blade RJ.
Robinson JE.
Peek RJ.
Weston JB.
Tetrahedron Lett.
1987,
28:
3857
<A NAME="RF17704SS-32">32 </A>
Mitchell RH.
Ghose BN.
Williams ME.
Can. J. Chem.
1977,
55:
210