RSS-Feed abonnieren
DOI: 10.1055/s-2005-865283
Stereoselective Synthesis of (E)-β-Arylvinyl Bromides by Microwave-Induced Hunsdiecker-Type Reaction
Publikationsverlauf
Publikationsdatum:
23. März 2005 (online)

Abstract
(E)-β-Arylvinyl bromides were readily prepared in a short reaction time (1-2 min) by microwave irradiation of the corresponding 3-arylpropenoic acids in the presence of N-bromosuccinimide and a catalytic amount of lithium acetate. Furthermore, two facile strategies for the efficient synthesis of (E)-β-bromo-4-arylethynylstyrene and (E)-β-bromo-4-arylstyrene have been developed by respectively combining Sonogashira and Suzuki coupling reaction with Hunsdiecker-type reaction. Formation of cis-α-bromo-β-lactone by microwave irradiation of cis-cinnamic acid with NBS provides a useful support for the mechanistic study of the present halodecarboxylation reaction.
Key words
(E)-β-arylvinyl bromides - α,β-unsaturated carboxylic acids - stereoselective synthesis - microwave irradiation - Hunsdiecker-type reaction
- 1
Davis FA.Lal GS.Wei J. Tetrahedron Lett. 1988, 29: 4269 - 2a
Tsuji J. Palladium Reagent and Catalysts, Innovations in Organic Synthesis Wiley; Chichester: 1995. - 2b
Diederich F.Stang PJ. Metal-Catalyzed Cross-Coupling Reactions Wiley-VCH; Weinheim: 1998. - 3a
Zweifel G.Whitney CC. J. Am. Chem. Soc. 1967, 89: 2753 - 3b
Alexakis A.Duffault JM. Tetrahedron Lett. 1988, 29: 6243 - 4a
Brown HC.Hamaoka T.Ravindran N. J. Am. Chem. Soc. 1973, 95: 6456 - 4b
Brown HC.Bhat NG.Rajagopalan S. Synthesis 1986, 480 - 4c
Brown HC.Hamaoka T.Ravindran N.Subrahmanyam C.Somayaji V.Bhat NG. J. Org. Chem. 1989, 54: 6075 - 4d
Brown HC.Larock RC.Gupta SK.Rajagopalan S.Bhat NG. J. Org. Chem. 1989, 54: 6079 - 4e
Masuda Y.Hoshi M.Arase A. J. Chem. Soc., Perkin Trans. 1 1992, 2725 - 4f
Stewart SK.Whiting A. Tetrahedron Lett. 1995, 36: 3929 - 4g
Petasis NA.Zavialov IA. Tetrahedron Lett. 1996, 37: 567 - 4h
Hoshi M.Tanaka H.Shirakawa K.Arase A. Chem. Commun. 1999, 627 - 4i
Hoshi M.Shirakawa K. Chem. Commun. 2002, 2146 - 5
Miller RB.McGarvey G. J. Org. Chem. 1978, 43: 4424 - 6a
Takai K.Nitta K.Utimoto K. J. Am. Chem. Soc. 1986, 108: 7408 - 6b
Takai K.Ichiguchi T.Hikasa S. Synlett 1999, 1268 - 7a
Harada T.Katsuhira T.Oku A. J. Org. Chem. 1992, 57: 5805 - 7b
Harada T.Katsuhira T.Hara D.Kotani Y.Maejima K.Kaji R.Oku A. J. Org. Chem. 1993, 58: 4897 - 8
Charreau P.Julia M.Verpeaux J.-N. J. Organomet. Chem. 1989, 379: 201 - 9a
Lipshutz BH.Keil R.Ellsworth EL. Tetrahedron Lett. 1990, 31: 7257 - 9b
Treilhou M.Fauve A.Pougny J.-R.Promé J.-C.Veschambre H. J. Org. Chem. 1992, 57: 3203 - 9c
Lipshutz BH.Lindsley C.Bhandari A. Tetrahedron Lett. 1994, 35: 4669 - 9d
Jyojima T.Katohno M.Miyamoto N.Nakata M.Matsumura S.Toshima K. Tetrahedron Lett. 1998, 39: 6003 - 9e
Huang X.Wang J.-H.Yang D.-Y. J. Chem. Soc., Perkin Trans. 1 1999, 673 - 10a
Haack RA.Penning TD.Djuric SW.Dziuba JA. Tetrahedron Lett. 1988, 29: 2783 - 10b
Farina V.Baker SR.Benigni DA.Hauck SI.Sapino C. J. Org. Chem. 1990, 55: 5833 - 10c
Boden CDJ.Pattenden G.Ye T. J. Chem. Soc., Perkin Trans. 1 1996, 2417 - 10d
Cid MB.Pattenden G. Synlett 1998, 540 - 11
Ranu BC.Samanta S.Guchhait SK. J. Org. Chem. 2001, 66: 4102 - 12
Fakhfakh MA.Franck X.Hocquemiller R.Figadére B. J. Organomet. Chem. 2001, 66: 4102 - 13
Wang L.Li P.Xie Y.Ding Y. Synlett 2003, 1137 - 14a
Hirao T.Masunaga T.Ohshiro Y.Agawa T. J. Org. Chem. 1981, 46: 3745 - 14b
Rossi R.Carpita A.Lippolis V. Synth. Commun. 1991, 21: 333 - 14c
Alzeer J.Chollet J.Heinze-Krauss I.Hubschwerlen C.Matile H.Ridley RG. J. Med. Chem. 2000, 43: 560 - 14d
Abbas S.Hayes CJ. Synlett 1999, 1124 - 14e
Abbas S.Hayes CJ.Worden S. Tetrahedron Lett. 2000, 41: 3215 - 14f
Kuang C.Senboku H.Tokuda M. Tetrahedron 2002, 58: 1491 - 15
Horibe H.Kondo K.Okuno H.Aoyama T. Synthesis 2004, 986 - 16
Feroci M.Orsini M.Palombi L.Sotgiu G.Inesi A. Electrochim. Acta 2004, 49: 635 - 17a
Johnson RG.Ingham RK. Chem. Rev. 1956, 56: 219 - 17b
Wilson CV. Org. React. 1957, 9: 332 - 17c
Berman JD.Price CC. J. Org. Chem. 1958, 23: 102 - 17d
Jones AS.Verhelst G.Walker RT. Tetrahedron Lett. 1979, 20: 4415 - 17e
Barton DHR.Lacher B.Zard SZ. Tetrahedron Lett. 1985, 26: 5939 - 17f
Izawa T.Nishiyama S.Yamamura S.Kato K.Takita T. J. Chem. Soc., Perkin Trans. 1 1992, 2519 - 17g
Graven A.Jøgensen KA.Dahl S.Stanczak A. J. Org. Chem. 1994, 59: 3543 - 17h
Chowdhury S.Roy S. Tetrahedron Lett. 1996, 37: 2623 - 17i
Chowdhury S.Roy S. J. Org. Chem. 1997, 62: 199 - 17j
Homsi F.Rousseau G. Tetrahedron Lett. 1999, 40: 1495 - 17k
Naskar D.Roy S. Tetrahedron 2000, 56: 1369 - 17l
You H.-W.Lee K.-J. Synlett 2001, 105 - 17m
Sinha J.Layek S.Mandal GC.Bhattacharjee M. Chem. Commun. 2001, 1916 - 17n
Roy SC.Guin C.Maiti G. Tetrahedron Lett. 2001, 42: 9253 - 17o
Das JP.Roy S. J. Org. Chem. 2002, 67: 7861 - 17p
Ye C.Shreeve JM. J. Org. Chem. 2004, 69: 8561 - 18a
Trumbull ER.Finn RT.Ibne-Rase KM.Sallers CK. J. Org. Chem. 1962, 27: 2339 - 18b
Wang C.-LJ.Calabrese JC. J. Org. Chem. 1991, 56: 4341 - 18c
Kitamura T.Aoyagi Y.Fujiwara Y. Chem. Lett. 1998, 1271 - 19a
Abramovitch RA. Org. Prep. Proced. Int. 1991, 23: 683 - 19b
Caddick S. Tetrahedron 1995, 51: 10403 - 19c
Loupy A.Petit A.Hamelin J.Texier-Boullet F.Jacquault P.Mathé D. Synthesis 1998, 1213 - 19d
Lidström P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 - 19e
Kidwai M. Pure Appl. Chem. 2001, 73: 147 - 19f
Larhed M.Moberg C.Hallberg A. Acc. Chem. Res. 2002, 35: 717 - 19g
Nüchter M.Ondruschka B.Bonrath W.Gum A. Green Chem. 2004, 6: 128 - 20
Kuang C.Senboku H.Tokuda M. Synlett 2000, 1439 - 21
Lopez LC.Strohriegl P.Stübinger T. Macromol. Chem. Phys. 2002, 203: 1926 - 22a
Moyano A.Pericà MA.Valentí E. J. Org. Chem. 1989, 54: 573 - 22b
Danheiser RL.Nowick JS. J. Org. Chem. 1991, 56: 1176 - 22c
Pommier A.Pons J.-M. Synthesis 1993, 441 - 22d
Morao I.Lecea B.Arrieta A.Cossío FP. J. Am. Chem. Soc. 1997, 119: 816 - 23a
Microwave irradiation of 4-phenylbut-3-enoic acid (162 mg, 1 mmol) in MeCN-H2O (4.6 mL:0.4 mL) solvent containing NBS (187 mg, 1.05 mmol) and catalytic amount of LiOAc (13 mg, 0.2 mmol) for 1 min gave the corresponding trans-3-bromo-4-phenylbutenolide in 85% yield. The physical data of trans-3-bromo-4-phenylbutenolide are as follows: colorless oil; IR (Nujol): 1810 cm-1 (γ-lactone C=O); 1H NMR (270 MHz, CDCl3): δ = 2.96 (1 H, dd, J = 18.1, 6.6 Hz), 3.23 (1 H, dd, J = 18.1, 7.6 Hz), 4.24 (1 H, m, J = 6.6, 7.6 Hz), 5.64 (1 H, d, J = 5.3 Hz), 7.35-7.44 (5 H, m); 13C NMR (67.5 MHz, CDCl3): δ = 38.73, 45.63, 87.75, 125.46, 128.97, 129.29, 135.74, 172.99; EIMS: m/z (%) = 242 [(M + 2)+, 24], 240 (M+, 25), 161 (45), 107 (100); HRMS: m/z calcd for C10H9 79BrO2 [M+]: 239.9785; found: 239.9762.
- 23b For early studies by other reaction, see:
Crich D.Beckwith ALJ.Filzene GF.Longmore RW. J. Am Chem. Soc. 1996, 118: 7422 - 25
Imai T.Nishida S. J. Org. Chem. 1980, 45: 2354 - 26
Hocking MB. Can. J. Chem. 1969, 47: 4567 - 27
Lee DG.Brown KC.Karaman H. Can. J. Chem. 1986, 64: 1054 - 28
Happer DAR.Steenson BE. J. Chem. Soc., Perkin Trans 2 1988, 19 - 29
Loar MK.Stille JK. J. Am. Chem. Soc. 1981, 103: 4174 - 30
Konz WE.Hechtl W.Huisgen R. J. Am. Chem. Soc. 1970, 92: 4104 - 31
Blade RJ.Robinson JE.Peek RJ.Weston JB. Tetrahedron Lett. 1987, 28: 3857 - 32
Mitchell RH.Ghose BN.Williams ME. Can. J. Chem. 1977, 55: 210
References
cis-3-Bromo-4-phenyloxetan-2-one (4) was prepared from cis-cinnamic acid in 85% yield according to the general procedure. The physical data of 4 are as follows: colorless oil; IR (neat): 1844 cm-1 (β-lactone C=O); 1H NMR (270 MHz, CDCl3): δ = 5.58 (1 H, d, J = 5.94 Hz), 5.74 (1 H, d, J = 5.94 Hz), 7.36-7.45 (5 H, m); EIMS: m/z (%) = 228 [(M + 2)+, 24], 226 (M+, 25), 182 (M+ - CO2, 100); HRMS: m/z calcd for C9H7 79BrO2 [M+]: 225.9629; found: 225.9627.