Synlett 2004(15): 2838-2839  
DOI: 10.1055/s-2004-836028
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Oxalic Acid: A Very Useful Brønsted Acid in Organic Synthesis

Kovuru Gopalaiah*
Department of Organic Chemistry, Indian Institute of Science, ­Bangalore - 560012, India
e-Mail: gopal@students.orgchem.iisc.ernet.in;
Further Information

Publication History

Publication Date:
25 November 2004 (online)

Introduction

The title compound oxalic acid is available in anhydrous and dihydrate forms and exhibits several features which have made it particularly attractive as a reagent in organic synthesis. Oxalic acid is a mild Brønsted acid, which finds application in the Beckmann reaction, [1] protection and deprotection of carbonyl compounds, [2-4] and various selective cleavage and hydrolytic reactions. It is frequently used as a mild acidic quench for a variety of reactions including oxidations. [5] Oxalic acid has also been used as an acidic agent in a number of condensation processes such as conden­sation of allylic alcohols with aromatic rings, [6] carbonyl compounds and hydrazines, [7] aromatic amines and aldehydes, [8] and it has been utilized as a bifunctional condensation partner in the synthesis of heterocyclic systems. [9]

Oxalic acid is the simplest of the dicarboxylic acids and is widely used in inorganic chemistry as a precipitant and chelating agent (oxalate as a bidentate ligand has been of great interest in coordination chemistry). [10]

    References

  • 1 Chandrasekhar S. Gopalaiah K. Tetrahedron Lett.  2003,  44:  7437 
  • 2a Andersen NH. Uh H.-S. Synth. Commun.  1973,  3:  125 
  • 2b Smith AB. Empfield JR. Vaccaro HA. Tetrahedron Lett.  1989,  30:  7325 
  • 2c Caine D. Venkataramu SD. Kois A. J. Org. Chem.  1992,  57:  2960 
  • 2d Ziegler FE. Becker MR. J. Org. Chem.  1990,  55:  2800 
  • 3a Pearson WH. Poon Y.-F. Tetrahedron Lett.  1989,  30:  6661 
  • 3b Mitani K. Yoshida T. Morikawa K. Iwanaga Y. Koshinaka E. Kato H. Ito Y. Chem. Pharm. Bull.  1988,  36:  367 
  • 3c Huet F. Lechevallier A. Pellet M. Conia JM. Synthesis  1978,  63 
  • 4a Martin VA. Murray DH. Pratt NE. Zhao Y.-b. Albizati KF. J. Am. Chem. Soc.  1990,  112:  6965 
  • 4b Avery MA. Chong WKM. Detre G. Tetrahedron Lett.  1990,  31:  1799 
  • 5a Apparao S. Schmidt RR. Synthesis  1987,  896 
  • 5b Liu H.-J. Nyangulu JM. Synth. Commun.  1989,  19:  3407 
  • 6 Fieser LF. J. Am. Chem. Soc.  1939,  61:  3467 
  • 7 Paquette LA. Wang T.-Z. Vo NH. J. Am. Chem. Soc.  1993,  115:  1676 
  • 8 Peesapati V. Pauson PL. Pethrick RA. J. Chem. Res., Synop.  1987,  194 
  • 9 Eweiss NF. Bahajaj AA. J. Heterocycl. Chem.  1987,  24:  1173 
  • 10a Krishnamurty KV. Harris GM. Chem. Rev.  1961,  61:  213 
  • 10b Kim D.-J. Kroeger DM. J. Mater. Sci.  1993,  28:  4744 
  • 11a Burn D. Petrow V. J. Chem. Soc.  1962,  364 
  • 11b Weinstein B. Fenselau AH. J. Org. Chem.  1965,  30:  3209 
  • 12 Boeckman RK. Walters MA. Koyano H. Tetrahedron Lett.  1989,  30:  4787 
  • 13a Demyttenaere J. Syngel KV. Markusse AP. Vervisch S. Debenedetti S. Kimpe ND. Tetrahedron  2002,  58:  2163 
  • 13b Carlin RB. Constantine DA. J. Am. Chem. Soc.  1947,  69:  50 
  • 13c Miller RE. Nord FF. J. Org. Chem.  1950,  15:  89 
  • 14a Bartlett PA. Meadows JD. Ottow E. J. Am. Chem. Soc.  1984,  106:  5304 
  • 14b Lygo B. O’Connor N. Tetrahedron Lett.  1987,  28:  3597 
  • 15a Comins DL. Abdullah AH. Mantlo NB. Tetrahedron Lett.  1984,  25:  4867 
  • 15b Comins DL. Hong H. J. Am. Chem. Soc.  1991,  113:  6672 
  • 16 Giles M. Hadley MS. Gallagher T. J. Chem. Soc., Chem. Commun.  1990,  1047