Synlett 2004(15): 2830-2832  
DOI: 10.1055/s-2004-835653
LETTER
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of the C1-C12 Fragment of the Cytotoxic Macrolide FD-891

Juan Murgaa, Jorge García-Fortaneta, Miguel Carda*a, J. Alberto Marco*b
a Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, Castellón, 12071 Castellón, Spain
b Depart. de Q. Orgánica, Univ. de Valencia, 46100 Burjassot, Valencia, Spain
Fax: +34(96)3544328; e-Mail: alberto.marco@uv.es;
Further Information

Publication History

Received 9 September 2004
Publication Date:
08 November 2004 (online)

Abstract

A stereoselective synthesis of the C1-C12 fragment of the naturally occurring, cytotoxic macrolide FD-891, is described. The initial chirality was created via an asymmetric Evans aldol reaction. Two other asymmetric reactions, a Sharpless epoxidation and an aldehyde Brown allylation were further key steps of the ­synthesis.

    References

  • 1a Eguchi T. Kobayashi K. Uekusa H. Ohashi Y. Mizoue K. Matsushima Y. Kakinuma K. Org. Lett.  2002,  4:  3383 
  • 1b Detailed spectral data of FD-891 are given in: Seki-Asano M. Tsuchida Y. Hanada K. Mizoue K. J. Antibiot.  1994,  47:  1234 
  • 2 Murga J. García-Fortanet J. Carda M. Marco JA. Tetrahedron Lett.  2004,  45:  7499 
  • 3 Eguchi T. Yamamoto K. Mizoue K. Kakinuma K. J. Antibiot.  2004,  57:  156 
  • 4 Bartra M. Urpí F. Vilarrasa J. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products   Vol. 2:  Lukacs G. Springer Verlag; Berlin: 1993.  p.1-65  
  • 5 Blakemore PR. J. Chem. Soc., Perkin Trans. 1  2002,  2563 
  • 6 The synthesis of a compound structurally related to fragment A has recently been reported: Chng S.-S. Xu J. Loh T.-P. Tetrahedron Lett.  2003,  44:  4997 
  • 7 Trost BM. Chisholm JD. Wrobleski ST. Jung M. J. Am. Chem. Soc.  2002,  124:  12420 
  • 8 This ZE isomerization during the oxidation with PCC has been reported to occur with the corresponding benzyl derivative: Danishefsky SJ. Berman EM. Ciufolini M. Etheredge SJ. Segmuller BE. J. Am. Chem. Soc.  1985,  107:  3891 
  • 9a Evans DA. Aldrichimica Acta  1982,  15:  23-32  
  • 9b Kim BM. Williams SF. Masamune S. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Winterfeldt E. Pergamon Press; Oxford: 1993.  p.239-276  
  • 9c See also: Cowden CJ. Paterson I. Org. React.  1997,  51:  1 
  • 10 Sibi MP. Org. Prep. Proced. Int.  1993,  25:  15 
  • 11 This olefination gave a better yield in 1,2-dichloroethane at 60 °C than in toluene at 110 °C, in contrast to that observed in a structurally similar situation: Marshall JA. Adams ND. J. Org. Chem.  2002,  67:  733 
  • 12 Horita K. Yoshioka T. Tanaka T. Oikawa Y. Yonemitsu O. Tetrahedron  1986,  42:  3021 
  • 13 Katsuki T. Martín VS. Org. React.  1996,  48:  1 
  • 14a Brown HC. Ramachandran PV. J. Organomet. Chem.  1995,  500:  1 
  • 14b Ramachandran PV. Aldrichimica Acta  2002,  35:  23 
15

Compound A: 1H NMR (500 MHz, CDCl3): δ = 7.10 (br s, 1 H), 5.83 (m, 1 H), 5.55 (d, J = 10.0 Hz, 1 H), 5.10-5.00 (m, 2 H), 4.20 (q, J = 7.0 Hz, 2 H), 3.61 (dd, J = 5.0, 4.0 Hz, 1 H), 3.48 (dt, J = 5.5, 6.5 Hz, 1 H), 2.96 (dd, J = 5.5, 2.2 Hz, 1 H), 2.88 (dd, J = 4.0, 2.2 Hz, 1 H), 2.68 (ddq, J = 10.0, 5.0, 6.8 Hz, 1 H), 2.28 (t, J = 6.5 Hz, 2 H), 2.00 (d, J = 1.3 Hz, 3 H), 1.85 (d, J = 1.0 Hz, 3 H), 1.30 (t, J = 7.0 Hz, 3 H), 1.06 (d, J = 6.8 Hz, 3 H), 0.90 (s, 9 H), 0.89 (s, 9 H), 0.09 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H), 0.01 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 169.1, 142.7, 138.1, 134.5, 131.9, 125.9, 117.3, 73.6, 73.0, 60.6, 58.5, 57.2, 39.5, 37.7, 25.9 (× 3), 25.8 (× 3), 18.3, 18.2, 16.6, 15.7, 14.3, 14.0, -4.2, -4.4, -4.8, -4.9.

16

None of the intermediates in the way towards A nor compound A itself was crystalline. Therefore, X-ray analyses aimed at configurational confirmation could not be performed. However, the key asymmetric transformations used here (Evans aldolization, Sharpless epoxidation and Brown allylboration) are well-known processes with safely predictable stereochemical outcomes. We are thus confident that the structure of synthetic intermediate A is that depicted in Scheme [3] . Furthermore, a comparison of 1H/13C NMR chemical shift and coupling constants values within the relevant fragment of FD-891 with those of compound A (see Table [1] below, atom numbering is shown in Figure [1] , coupling constant values are given in parenthesis) gives support to our structural assignment (the observed differences can be accounted for with the fact that the cyclic FD-891 is much more rigid than A from the conformational point of view; moreover, A bears two bulky TBSO groups instead of the free hydroxyls).

17

Preliminary experiments have shown that oxidative cleavage of the terminal double bond in A can be performed via sequential osmylation and NaIO4 oxidation to yield an unstable aldehyde.


Table 1 Comparison of Spectroscopic Data of Compounds A and FD-891

Atom FD-891 A Atom FD-891 A

H-3 7.30, t (1.3) 7.10, br s C-1 168.9 169.1
H-5 5.53, d (10.3) 5.55, d (10.0) C-2 124.3 125.9
H-6 3.12, ddq (10.3, 4.1, 6.9) 2.68, ddq (10.0, 5.0, 6.8) C-3 144.0 138.1
H-7 4.17, dd (6.0, 4.1) 3.61, dd (5.0, 4.0) C-4 135.7 131.9
H-8 3.25, dd (6.0, 2.5) 2.88, dd (4.0, 2.2) C-5 141.6 134.5
H-9 3.15, dd (2.5, 0.8) 2.96, dd (5.5, 2.2) C-6 35.9 37.7
H-10 3.55, m 3.48, dt (5.5, 6.5) C-7 70.8 73.0
H-11 2.55, m, 2 H 2.28, t, 2 H (6.5) C-8 55.1 57.2
MeC2 2.10, d (1.2) 2.00, d (1.3) C-9 56.0 58.5
MeC4 2.03, d (1.2) 1.85, d (1.0) C-10 71.1 73.6
MeC6 1.15, d (6.9) 1.06 d (6.8) C-11 37.9 39.5
MeC2 13.6 14.0
MeC4 15.5 15.7
MeC6 16.5 16.6